Polar Ozone Loss and the Tropical Tropopause Layer

Research based on meteorological fields from data assimilation systems

Markus Rex

Alfred Wegener Institute for Polar and Marine Research Potsdam, Germany

Polar ozone loss process

Ozonesondes

Ozonesonde launch in the Arctic

Rex et al., JGR, 1998

The Match project: Lagrangian measurements of chemical ozone loss rates

HELMHOLTZ

The Match project

- International network of ~30 Stations operated by 17 nations.
- ~500-1200 ozonesonde launches per winter.
- 15 Arctic and 2 Antarctic campaigns since the early 1990s.

e.g.:

Von der Gathen, Rex et al., *Nature*, 1995 Rex, von der Gathen et al, *Nature*, 1997 Manney, Santee, Rex et al., *Nature*, 2011

<u>Multiple Sensor approach for a System of three sensors</u> (e.g. (A) ILAS II, (B) POAM III, and (C) sondes)

Standard Matches:

i+j+k+l+m+n+o+p+q equations for the parameters L, Bias_B, and Bias_C, which can be determined simultaneously by a multivariate regression analysis

Compared to standard Match: Ninefold increase in the number of equations for a threefold increase in the number of parameters

-50

6 HELMHOLTZ GEMEINSCHAFT

SPARC data assimilation workshop, Socorro, 12 June, 2012

100

100

100

0.5

0

-0.5

-1.0

0.5

0

-0.5

-1.0

0.5

0

-0.5

-1.0

100

a HELMHOLTZ GEMEINSCHAFT

a

HELMHOLTZ

GEMEINSCHAFT

100

E 1.0

· 0.5

0

-0.5

-1.0

1.0

- 0.5

0

-1.0

1.0

0.5

-0.5

-1.0

100

HELMHOLTZ GEMEINSCHAFT

SPARC data assimilation workshop, Socorro, 12 June, 2012

2

AWI

HELMHOLTZ

Biases of ILAS2 versus POAM 3

For background conditions ILAS II v1.4 is about 200-350 ppbv lower than POAM III. For very low ozone under ozone hole conditions it is about 50 ppbv higher.

HELMHOLTZ

Match: Chemical ozone loss rates @ e Θ ~465K (unmixed vortex air)

Ozone loss profiles

Manney, Santee, Rex et al., Nature, 2011

Ozone loss versus PSC formation potential (V_{PSC})

V_{PSC}/V_{Vortex}

Update of Rex et al., 2004; 2006; WMO 2007; 2011

T<T_{NAT} occurrence frequency over Sodankylä 50hPa, based on radiosonde data

Rigel Kivi, FMI

Theoretical understanding of polar ozone loss process

Frieler et al., GRL 2006; WMO 2007

Theoretical understanding of polar ozone loss process

Frieler et al., GRL 2006; WMO 2006

Geophysika – 2003, 2010

Kiruna, March 2010

Lagrangian aircraft measurements:

Self-Match-flights

- Flight pattern designed to probe air masses before and after sunset/sunrise
- Success of flight planning confirmed by contrail encounter
- EUPLEX:
 - 1 Self-Match flight in 2003
- RECONCILE: Jan-March 2010
 - 3 Self-Match flights
 - 1 Match/Self-Match flight

Schofield et al., GRL, 2008

Polar ozone loss process

Theoretical understanding of polar ozone loss process

Update of Frieler et al., GRL 2006; WMO 2007

Polar ozone loss process

The "OH shield"

Transport into the Stratosphere

Thermodynamic vertical wind

w from the continuity equation for mass:

From the continuity equation for thermal energy follows:

$$w = (Q - \partial_t \theta - \frac{u}{a \cos \varphi} \partial_\lambda \theta - \frac{v}{a} \partial_\varphi \theta) / \partial_z \theta$$

20 days lagrangian transport in ATLAS

starting 1 January 2000

Wohltmann and Rex, ACPD, 2007

Vertical diffusion rate 20 km altitude

Wohltmann and Rex, ACPD, 2007

Residence time in upper TTL (between 385-395 K)

NH winter NH summer

HELMHOLTZ

Geographic distribution of time spent in the troposphere for stratospheric air

During transport from the boundary layer to the LCP Given relative to the tropical average Based on ATLAS

Rex et al., *Nature*, under review

Global ozonesonde station network

HELMHOLTZ

TES tropospheric ozone column October 2009

HELMHOLTZ

Source region for stratospheric air OH distribution / SO₂ lifetimes

Fraction of CH₂Br₂ reaching the stratosphere

Theoretical understanding of polar ozone loss process

Update of Frieler et al., GRL 2006; WMO 2007

Lagrangesche Modellierung – ATLAS

~20km altitude, 20 model days, dynamical tracer (PV), ~50km resolution run

- detailed homogeneous and heterogeneous chemistry
- Lagrangian particle sedimentation scheme
- no numerical diffusion, sophisticated 3d mixing scheme
- full parallel architecture long integrations for climate runs feasible

Wohltmann & Rex, 2009; Wohltmann, Lehmann, and Rex, 2010

ATLAS – fully lagrangian chemistry-/transport modell

HELMHOLTZ

ATLAS vs. SOLVE ER-2 27 January 2000

Wohltmann, Lehmann, and Rex, 2010

HELMHOLTZ

Ozone and ozone loss inside vortex @ e Θ =465K (unmixed vortex air)

Ozone VMR [ppmv]

Ozone and ozone loss inside vortex @ e Θ =465K (unmixed vortex air)

Ozone and passive ozone inside vortex @ fixed Θ =475K

(full vortex average, including mixed areas)

Conclusions

- Arctic ozone loss continues to get worse due to ozone/climate coupling.
- Processes at the tropical tropopause layer, particularly above the West Pacific, play an important role for the global ozone layer.
- A tropospheric ozone and OH hole exists over the tropical West Pacific.
 => Emissions from South East Asia and the tropical oceans there can play a larger role for the stratospheric composition.
- Data assimilation products are the basis for studies of stratospheric processes. These are particularly sensitive on uncertainties in:
 - The temperature fields in the polar lower stratopshere.
 - The vertical wind fields at the tropical tropopause.

Typical movement of Arctic polar vortex

Typical movement of Arctic polar vortex

HELMHOLTZ

Impact on mid-latitude UV

