A multi-diagnostic intercomparison of tropical width time series using models, reanalyses, and satellite observations

Sean Davis, Karen Rosenlof, Paul Young

NOAA Earth Systems Research Laboratory CIRES, University of Colorado at Boulder

Motivation

- Evidence of atmospheric circulation changes, and their poleward migration (tropical widening)
 - Potential impacts on surface climate, atmospheric composition
 - Possible drivers: GHGs, O₃, aerosols
- Numerous diagnostics of "tropical width"
 - 0.2° 3° decade⁻¹
 - Models show less widening than reanalyses
- Do reanalysis trends agree?

The zonal mean atmosphere

Davis and Rosenlof, J. Clim, 2012

Previous widening estimates

Davis and Rosenlof, J. Clim, 2012

Previous work - tropopause

Tropopause metrics – sensitivity

Birner, JGR, 2010

Alternative tropopause metrics

See also Birner, JGR, 2010

Tropopause height trends

Tropopause height trends

Alternative tropopause metrics

OLR-based widening

OLR trend example

OLR-based widening

Hadley-cell metrics

Wind-based metrics

Global tropical width trends, ° latitude decade⁻¹

Conclusions

 Tropical widening trends based on absolute thresholds are biased high

– OLR, tropopause

- Reanalyses in good agreement in zonal-wind metrics, not others
- Trend range $0 1.5^{\circ} \text{ dec}^{-1}$
 - Most trends are positive, but insignificant
 - Largest reanalysis trends in ψ_{500} (1-1.5° dec⁻¹)
 - Largest disagreement in ψ_{500}

Seasonal trends

Tropical width drivers

$$\phi_H \sim \left(\frac{g}{\Omega^2 a^2} \frac{H_t \Delta_h}{\theta_0}\right)^{\frac{1}{2}}$$

Held and Hou, 1980

Lu et al., 2007

Tropical width drivers

• Thermal and tropopause changes induce dynamical changes

Polvani et al., J. Clim, 2011

Previous work – MSU temperature

0.8° decade⁻¹ Fu et al., Science, 2006 0.5° decade⁻¹ Fu and Lin, J. Clim., 2011

Previous work – Hadley cell

Satallita OI P (NV m-2) ERA40 NCEP/NCAR NCEP/DOE Degree(Latitude) 0 L C C P G 0 280 290 50 45 45 40 -1 40 DJF MAM 35 (b)SH 35 6 30 Degree(Latitude) 30 Latitude 25 20 20 15 0 15 DJF MAM (c)Total 10 6 10 Degree(Latitude) 5 5 0 0 U υ DJF MAM -5 -5 -10 -10 -15 e⁻¹⁵ 20 25-Latitude ⊕-20 11-25 _-30 -35 -30 -40 -35 -45 -50 |- 1980 -40 1985 1990 20'00 1980 1995 2005 1985 1990 1995 2000

NCEP/NCAR ψ_{500} (streamfunction)

1-1.5° decade⁻¹

~1 decade⁻¹

Hu and Fu, ACP, 2007

Tropopause sensitivity-threshold

Outline

- Defining the tropics edge latitude overview
- Summary of previous work
- Trend sensitivity to edge definitions
- Trend comparison from different reanalyses, satellite obs
 - Davis and Rosenlof, J. Climate, in press

"Mean" (1st moment) metrics

Reanalysis overview

	Number of tropopause levels*	Vertical resolution (# of levels)		Horizontal resolution (lon x lat)	
Reanalysis		Model- grid	Pressure- grid	Model-grid	Pressure-grid
NCEP/NCAR	6	28	17	1.875° x ∼1.9°	2.5° x 2.5°
NCEP CFSR	11	64	37	0.5° x 0.5°	0.5° x 0.5°
ERA-40	10	60	23	1.125° x ~1.125°	1.125° x 1.125°
ERA-interim	10	60	37	0.703° x ~0.703°	1.5° x 1.5°
JRA	9	40	23	1.125° x ~1.125°	1.25° x 1.25°
MERRA	9	72	42	0.667° x 0.5°	0.667° x 0.5°

Hemispheric timeseries

2000

2000

201(

2010

Hadley-cell metrics

Hemispheric trends

Summary (part 1)

- Tropical width value and interannual variations:
 - Good agreement for wind, tropopause
 - Medium agreement for $\psi_{\rm 500}$, OLR
 - Poor for P-E
- Tropopause trends:
 - Absolute threshold trends biased high
 - Relative threshold/gradient trends in agreement, insignificant (except CFSR)
 - No hemispheric differences (except NCEP)
- OLR trends:
 - Absolute threshold trends biased high
 - Relative threshold trends insignificant
 - Some significant trends in NH. NH > SH

Summary (part 1)

- ψ_{500} trends:
 - 1-1.5° decade⁻¹ (except CFSR)
- P-E=0 trends:
 - Poor agreement
 - Spurious SH shift in 1987 in JRA
 - SH shift in MERRA around 2000
- u trends:
 - Good agreement, but small, insignificant
- No correlation between ψ_{500} and P-E trends
- Disagreements not more widespread in SH than NH

Summary (part 2)

- Stratospheric WV changes could contribute to widening
 - IF increases are similar to those pre-2000
 - ~20 50% effect, relative to GHG/O₃
- Affect jet more than Hadley cell
- Extratropical cooling causes widening
 - Tropical cooling in opposite direction
 - Tropopause height change secondary