Diagnostics of the troposphere-stratosphere interaction using the 3D Eliassen-Palm (Plumb) flux in different reanalyses

Yulia Zyulyaeva and Sergey Gulev

P.P.Shirshov Institute of Oceanology, RAS, Moscow Sea-Air Interaction Laboratory

- 1. The "Stratospheric bridge" concept
- 2. Methodology using vertical component of E-P flux
- 3. Q: How capable different modern era reanalysis of replicating this mechanism?
- 4. Comparative assessment using ERA-Interim, MERRA, NCEP/NCAR1 and JRA-25
- 5. Conclusions

Concept

Scheme of the upward and downward wave propagation

Zyulyaeva, Yu.A., Jadin, E.A., 2008. Analysis of three - dimensional Elliassen-Palm fluxes in the lower stratosphere, *Russian Meteorology and Hydrology, 2009, N 8, pp. 5-14*

Scheme of the upward and downward wave propagation

Termination of the Troposphere-to-Stratosphere wave propagation

Zyulyaeva, Yu.A., Jadin, E.A., 2008. Analysis of three - dimensional Elliassen-Palm fluxes in the lower stratosphere, *Russian Meteorology and Hydrology, 2009, N 8, pp. 5-14*

Relations between EPz-Flux and SST anomalies

December - December

 1^{st} EOF for F_z

Evgeny A. Jadin, Ke Wei, Yulia A. Zyulyaeva, Wen Chen, Lin Wang, Stratospheric wave activity and the Pacific Decadal Oscillation, *Journal of Atmospheric and Solar-Terrestrial Physics* 72 (2010) 1163–1170

The Pacific Decadal Oscillation

Methodology

$$\frac{\partial \overline{u}}{\partial t} - f \overline{v}^* = \nabla \bullet \vec{F}$$

As proposed by Eliassen and Palm (1961)¹

Eliassen, A. and E. Palm, 1961: On the transfer of energy in stationary mountain waves. *Geofys. Publ., No. 3, 1-23* Plumb, R.A., 1985: On the three-dimensional propagation of stationary waves. *J. Atmos. Sci., 42, 217-229*

DATA

Climatology ERA_int

Positive x-component eastward propogation

Negative y-component equatorward propagation

4 3.6 3.2 2.8 2.4 2

1.6 1.2

0.8

0.4

-1.6

-2 -2.4 -2.8 -3.2

-3.6

2 1.8 1.6 1.4 1.2

1

0 -0.4 -0.8 -1.2

2600 2400 2200 1800 1800 1200 1200 1200 200 600 400 200 -200 -400 -600 -1200 -1200 -1400 -1200 -1400 -1800 -2200 -2200 -2200 -2400

9/17

Imporatant!

Differences for z-component for DECEMBER

No significant differences in x and y components

Time series for z-component of the Flux

Linear Trends of the z-component

% of the average values for 10 years

No significant trends for December over the Eastern Eurasia

Positive trend in the Northern Atlantic means that downward propagation is getting weaker!

10% - 30% 5% - 10% 0% - 5% -5% - 0% -10% - -5% -20% - -10%

EOF for ERA Interim

EOFs

1 EOF of the Fz 30hPa, December

JRA-25

NCEP/NCAR - 1

2 EOF of the Fz, December

Conclusions

✓ **Qualitatively** all four reanalysis adequately replicate the stratospheric bridge connecting the North Pacific and the North Atlantic.

✓ **Quantitatively** there are significant differences in absolute values of the vertical component of E-P flux across different reanalysis.

I.e. NCEP/NCAR-1 underestimates the vertical component of E-P flux compared to the other reanalyses that can be associated with the computation of the coefficient of the static stability in this reanlysis.

✓ **Linear trends** in the vertical component of E-P flux are in a high agreement across different products.

✓ **EOF analysis** confirms a close consistency of E-P flux in different products

In Progress

- 1. Extend the comparison to NCEP-CFSR, NCEP-DOE and potentially to the ASR (Arctic System reanalysis)
- 2. Work with daily (and finer resolution data) \rightarrow timing of the events
- 3. Case studies (e.g. 2009, 2010 winters)
- 4. Impact of the downward E-P flux in the Atlantic on the blocking activity

Thank you

Differences NCEP1 – ERA_int

No significant differences in x and y components

30° 0

30°U

300

30° -0°

30°W

99%

95%

90%

60°E

60°E

60'

Differences NCEP1 – ERA_int

No significant trends in the key-role regions in x and y components!

Climatology NCEP/NCAR - 1

Climatology NCEP/NCAR - 1

Positive z-component means upward propagation

Imporatant!

Negative values in the Northern Atlantic region

Linear Trends z-component

EOF JRA-25

EOF MERRA

EOF NCEP/NCAR - 1

