
Pokey the Fire-Fighting RobotPokey the Fire-Fighting RobotPokey the Fire-Fighting RobotPokey the Fire-Fighting Robot

A Logical Design Using Digital and Analog
Circuitry

Submitted by Group 7: Gerald Weed

Michael Schumacher

Shawn McVay

Jack Landes

Submitted on: May 11th, 1999

1

ABSTRACT

“Pokey the Fire-Fighting Robot”

By: Gerald Weed, Michael Schumacher,
Shawn McVay, and Jack Landes

Electrical engineering majors at New Mexico Tech are required to take a course in

introductory design that introduces students to the idea of building a free-moving robotic

system. This system must be completely autonomous, navigate a maze without touching the

walls, and extinguish a candle that is located in one of four “rooms”. Another restraint on the

system is that it must fit within a 12.25”x12.25”x12.25” cube.

This report describes one method used to accomplish the above task. Using a Motorola

68HC11 microcontroller, a variety of sensors, and software programming written in the C

language, the robot will move around the maze, speeding up and slowing down so as to not

touch the walls. Contained within this report are the details of the method with special

attention given to subsystem design and integration. Special focus should be given to the

motor control, fire suppression, and modified differential drive subsystems, as they were

unique designs within the class.

Keywords: motors, LMD18200 H-bridges, pulse-width modulation (PWM), encoders,

decoders, Altera, programmable logic device (PLD), duty cycle, sensors, GP2D12,

optical, infrared, OPT101, Motorola 68HC11, EPM7128ALC84-12, monopulse radar.

2

Table of Contents
 Page

Abstract 1
Table of Figures 3
1. Introduction 5
2. Theory of Operation 6

2.1 Sensor Subsystems 6
2.1.1 Wall Following 6
2.1.2 Line Detection 8
2.1.3 Fire Sensors 10

2.1.3.1 Fire Ranging Sensor 10
2.1.3.2 Fire Bearing Subsystem 12

2.2 Motor Control Subsystem 17
2.2.1 Pulse Width Modulation 18
2.2.2 H-bridge Motor Drivers 24
2.2.3 Encoders/Decoders 27

2.3 HC11 Control Code 30
2.4. Fire Suppression Subsystem 33

2.4.1 Water Tank 34
2.4.2 Water Pump 34
2.4.3 Rubber Hosing and Nozzles 35
2.4.4 Sprinkler Head 35
2.4.5 Secondary Battery 35
2.4.6 Interface Circuitry 36

2.5. Power Board Design 36
2.6. Chassis Design 39
2.7. Budget Analysis 43

3. Conclusion 45
Bibliography 46
Appendix A 47
Appendix B 66

3

Table of Figures

Section 2.1 Page

2.1.1: Wall Following Subsystem Unit Schematic for One Sensor 7

2.1.2: Schematic for Line Detection Sensor 9

2.1.3: Schematic of a Long Distance Fire Sensor 11

2.1.4: Ideal Radiation Pattern for an Emitter or Detector 12

2.1.5: Monopulse System Setup Diagram 13

2.1.6: Monopulse Radiation Pattern from Summation of Detector Patterns 14

2.1.7: Monopulse Radiation Pattern from Subtraction of Detector Patterns 14

2.1.8: Schematic for One-half of Fire Bearing Subsystem 15

Section 2.2

2.2.1: Comparison of PWM and Pulse Signal 18

2.2.2: Incorrect Clock Divider Program 19

2.2.3: Correct Clock Divider Program 20

2.2.4: PWM Generation Program 22

2.2.5: Sample HC11 code for PWM Generation 23

2.2.6: Block Diagram of Motor Control Subsystem 25

2.2.7: Schematic for LMD18200 H-bridge Motor Driver 26

2.2.8: Encoder Signal Processing Design 28

2.2.9: Second Encoder Processing Design 29

2.2.10: Third Encoder Processing Design 29

Section 2.3

2.3.1: Flowchart for HC11 Control Code 30

2.3.2: Wall Following Block Diagram 32

4

Section 2.4 Page

2.4.1: Fire Suppression Subsystem 34

2.4.2: Interface Circuitry for Fire Suppression Subsystem 36

Section 2.5

2.5.1: Schematic for a 5-Volt Converter From a 12-V Battery 37

2.5.2: Schematic for an Adjustable Voltage Converter and Regulator 37

Section 2.6

2.6.1: Bottom View of Base 40

2.6.2: Top View of Base 41

2.6.3: Second Level of Chassis 42

2.6.4: Third Level of Chassis 42

Section 2.7

2.7.1: Pie Chart of Group 7 Budget Usage 44

5

1 Introduction

The overall objective of the robot is to be able to navigate a robot through a

standardized maze, detect a candle flame, and extinguish it. To this end, there are four

different subsystems that enable the robot to view its environs and aid it in maneuvering

the maze to accomplish its task. In order to discover where the robot is relative to its

environs, the wall following subsystem has been implemented. To aid the robot, there are

white lines in the maze that signify doorways, the starting and finishing circle for the

robot, and an area of radius one foot that is centered on the candle. In order to make the

most use of these lines, there is a line detection subsystem to aid the robot in traversing

the maze. A motor control system must be implemented to maneuver the robot through

the maze based on its interpretation of its position. Distance from walls, white lines, and

the distance to the fire determine the direction and speed that the wheels must turn. Our

innovative altered differential drive system also adds more stability to our design. The

center of gravity of the robot and the three points of contact with the floor imply that it is

inherently difficult to make the robot turn over. With this robust design, our robot can

move around the maze very efficiently. Finally, the overall task of the robot is to find the

candle and extinguish it. The robot uses two types of systems in order to detect the flame.

First, for long-distance flame detection, there is a fire ranging sensor. While this system

is very effective for this application, it has a narrow beam width and may be too

unreliable to use for short- and medium-range flame detection. In this case, we have

implemented another flame sensor that is based on a radar system known as monopulse

radar. These four systems guide the robot in its mission to be a successful firefighter.

6

2 Theory of Operation

2.1 SENSOR SYSTEMS

Sensors are the eyes and ears of the robot. Without sensors, as with virtually every

other system, the robot is useless. If no sensors are on the robot, the robot blindly follows

its own will, often ending up in a heap of parts alongside a wall, at the bottom of a large

pit, or well. Of course, there is a vested interest in keeping the robot intact and able to do

its job, so it is very worthwhile to have a fully functional sensor system.

All of the systems presented here have their strengths and weaknesses. The

advantages and disadvantages of the individual parts of each subsystem will be explained

throughout this section. While the electrical and functional aspects of the sensor system

will be discussed in detail, the practical aspects of circuit board construction will be

briefly analyzed near the end of this section.

2.1.1 Wall Following Subsystem

The land area of Australia is about 7.7 million square kilometers, which is almost

the same as the land area of the United States. (http://www.aiaa.org/calendar/iaf98cfp.html) We

throw in this fact not because it is an interesting tidbit, but to make a point. While there is

a lot of land on this earth, it does not make much difference if one’s location is unknown.

This is as important for a robot as it is for a human. While this particular robot is not

going to be roaming across the Australian Outback, it will be navigating a standardized

98-inch by 98-inch maze. The maze is set up with walls partitioning it into rooms and

halls. Since the robot cannot use dead reckoning (a method of navigation by which the

robot has a preset map in its memory), we must have a subsystem to navigate the robot

through the maze.

7

Figure 2.1.1 below shows a schematic of one unit of the wall following

subsystem. Note for the wall following subsystem, there are three identical units, which

compose the entire subsystem. We include the schematic of one sensor unit to minimize

confusion.

Figure 2.1.1: Wall Following Subsystem Unit Schematic for One Sensor

A breakdown of the wall following unit follows. The primary component of the wall

following subsystem is the Sharp GP2D12 distance-measuring sensor. This sensor uses

triangulation in order to measure the distance to a specific target, usually in the 10- to 80-cm

range. This sensor has two unique advantages. First, it is non-specific to any type of wall

coloring, provided it is not too reflective. Second, the output of the sensor is an analog voltage

that typically ranges from 1 volt at 80 cm to 3 volts at 10 cm. While a two-volt variation over a

70-centimeter range is acceptable for the robot, the HC11 has an analog-to-digital voltage

converter that can only accept voltages in the range of zero to five volts. In order to maximize

the A/D converter capabilities, a linear non-inverting amplifier of gain 1.6 was added between

the HC11 and the Sharp sensor in order to set the range of the wall measuring sensor for a 0-5

volt range. The linear amplifier uses a Texas Instruments TLC274 14-pin quad single supply

op-amp, to amplify the signal. This operational amplifier is used for three reasons. The most

important reason is that these op-amps use a single voltage supply instead of a dual voltage

supply as with standard op-amps. These reduce the overall complexity of the robot by

removing the circuitry necessary for a negative voltage supply. The second reason is that the

8

wall following subsystem uses only one op-amp for all three sensors, reducing circuit

complexity, parts count, and power consumption. Additionally, we were able to obtain these

operational amplifiers as samples, reducing the overall cost of the robot. Regardless, the

output of the op-amp is fed into the HC11 analog-to-digital converter, where an 8-bit value is

used by the HC11 to determine where the robot is relative to that wall.

The placement of the sensors will be discussed in the chassis design section of this

paper.

2.1.2 Line Detection Subsystem

The rules for the competition contain a few regulations concerning the placement of

white lines in the maze. White lines are placed where there is a doorway into a room and to

signify an arc of radius one-foot, in the center of which the candle lies. A circle approximately

one-foot in diameter is placed in the maze to act as a starting and stopping point for the robot.

There are several good reasons why these lines and circles are in the maze. The doorway lines

are important as it allows for algorithms to scan the room for a fire without actually entering it,

saving precious time. The one-foot radius arc is important as part of the robot must be within it

to legally extinguish the fire. Finally, the one-foot diameter “home-circle” is important as an

algorithm can be constructed in order to make the robot return to this circle. With all of the

information these white lines and circles convey, it is extremely worthwhile to have some

method of detecting these events. Hence, the robot contains a line detection subsystem.

Figure 2.1.2 below shows the schematic for one sensor for the line detection

subsystem. The robot currently carries two identical sensor implementations.

9

Figure 2.1.2: Schematic for Line Detection Sensor

This system is slightly more complex than the wall following subsystem. For reliability

reasons, we decided to construct an infrared emitter/detector pair. Having an active line

detection sensor is important because we did not want to be dependent on ambient light for

detecting the white line. The emitter we used is a QT Optoelectronics CQX-15 IR emitter. We

used this due to its high output and its capacity to be connected to +12 volts if the line sensors

required more power. A current limiting resistor was placed between the cathode and ground

to avoid shorting out the emitter. The detector is made of a PN168 phototransistor that uses a

piece of floppy disk material as an optical filter. The emitter voltage of the PN168 is fed into

the positive terminal of a comparator. This comparator is built using a TI TLC272 op-amp,

which has the same characteristics of the TLC274 except that the TLC272 is a dual op-amp.

The negative terminal of the comparator is connected to an adjustable voltage source that can

be varied between 0 and 5 volts. This reference voltage is made adjustable so one can adjust

the comparison for varying light conditions in the maze. The circuit works as follows. The

detector’s emitter voltage is low when it sees a black floor and high when it sees a white line.

If the detector senses a black floor, the voltage reference is higher than the emitter voltage, so

the op-amp outputs a logic low voltage. However, if a white line is detected, the emitter

10

voltage is higher than the adjustable voltage reference, so the comparator outputs a logic high

voltage. The output of the comparator is fed into a port on the HC11 to trigger an interrupt

when a rising edge is detected.

This circuit works nicely except for two small problems. The first problem with this

circuit is that it is extremely difficult to adjust. The circuit as it stands has a problem of either

railing out at 0 volts or near 5 volts if one does not take several minutes adjusting the voltage

reference to changing maze conditions. Second, the output may be a bit unstable, especially if

it detects a large amount of white particles on the floor. White particles could result from some

other contestant overlubricating his tires or treads and leaving a nice glossy reflective coating

along the maze floor. Adding Schmitt trigger inverters between the output of the comparator

and the HC11 would go a long way toward resolving this problem; however, this was not

implemented due to time restrictions.

2.1.3 Fire Sensors

The overall goal of this robot is to find and extinguish a candle somewhere within a

maze. We implemented two different fire sensors for the robot. The first is a fire ranging

sensor that is more suited to detect the candle at long distances. The second sensor is based on

a well-known implementation known as monopulse radar. This sensor arrangement has some

unusual capabilities that will be discussed in this section.

2.1.3.1 Fire Ranging Sensor

The maximum diagonal length of any one room in the maze is approximately 1.5

meters. In order to save time while searching for the candle, it is desirable to have the robot

11

enter the room, stop just inside, and perform a scan of it. Thus, a long distance sensor for

detecting the flame is very useful.

Figure 2.1.3 below shows the final schematic for detecting the flame at long distances.

Figure 2.1.3: Schematic of a Long Distance Fire Sensor

To detect the emissions from the candle, we used a PN168 phototransistor that had an optical

filter made from part of a floppy disk. The material used to construct a floppy disk will

suppress higher wavelength visual light while allowing red, and infrared, light to pass through.

The phototransistor is set up in a fashion similar to the one used with the line sensors. The

emitter voltage is wired to a non-inverting amplifier of gain 2200. The high gain is necessary

to be able to discern a flame at 1.5 meters within a room. The op-amp used in the amplifier is a

TI TLC271, which has the same single-supply capabilities as a TLC274 except it accepts only

one pair of inputs. The output of the amplifier is passed into the HC11 A/D converter for

processing.

This circuit works very well at distances over 1 meter, but it has some problems. First,

a flame at 1.5 meters is barely discernable compared to no flame in the room. With an

12

amplification of 2200, it is very hard to set levels in the HC11 to determine if there is a flame

in the room. The beam width of the phototransistor is relatively narrow, so it might be possible

to not detect a flame if a thorough scan is not done. In addition, a one-stage amplifier for such

a high gain may not be desirable. Instead it might be worthwhile to use two stages of lesser

gains and cascade them in order to achieve the required gain should one decide to use this

circuit.

2.1.3.2 Fire Bearing Subsystem

The second method of fire detection is known as the fire bearing subsystem. We

decided to implement two systems in order to add redundancy and reliability to the robot. This

system is present to detecting the flame at medium and short distances. Also, this system is

based on a radar implementation known as monopulse radar.

A brief discussion on the basics of monopulse radar is necessary to understand the

reasons behind implementing such a system. Consider the following system, composed of a

directional emitter or detector, and constructed to have an optimal radiation pattern shown in

Figure 2.1.4.

Figure 2.1.4: Ideal Radiation Pattern for an Emitter or Detector

13

A monopulse system is constructed using two emitters or detectors separated by a very small

distance, as shown in Figure 2.1.5 below. In fact, the separation can be so small that the

overall radiation patters might overlap each other. This can be very useful.

Figure 2.1.5: Monopulse System Setup Diagram

For the fire bearing subsystem, we are using two detectors to sense the fire and using the

HC11 to compute where the fire is. There are two feasible ways of combining the signals. If

the individual radiation patterns shown in Figure 2.1.5 are added, the resulting radiation

pattern is a huge lobe (shown in Figure 2.1.6). This pattern is essentially a one-lobe system

with a flatter radiation pattern than a single detector. It has the advantage of being able to find

the flame as with the flame detection system described earlier, so this system does add

redundancy in that respect.

14

Figure 2.1.6: Monopulse Radiation Pattern from Summation of Detector Patterns

What happens when the two signals coming in from the detectors are subtracted? A very

unique radiation pattern is realized (shown in Figure 2.1.7 below).

Figure 2.1.7: Monopulse Radiation Pattern from Subtraction of Detector Patterns

A very deep null is formed in the radiation pattern as a result. If the candle is directly ahead of

the robot, the candle will be in the null and the robot moves straight ahead. But what happens

if the candle is to the right of the robot? In this case, the intensity for the right detector will

register higher than the one on the left. Thus, the robot will know that the candle is on the

15

right, and will move appropriately. The same argument holds true if the candle is to the left of

the robot.

This is a superior way of detecting the candle for several reasons. Since the null is so

sharp in the difference pattern, the robot can easily follow it. Second, this configuration is very

easy to program in the HC11, as it requires only a subtraction and a few comparison

statements. Most importantly, it beats the standard method of detection known as

“sidewinding” by requiring less time to find the candle and guaranteeing a greater accuracy.

Essentially, “sidewinding” is a method using only one sensor where one scans the room for

fire and records the greatest signal strength in volts. The system then attempts to match the

recorded highest voltage by scanning the room again in order to get a lock on the flame.

Figure 2.1.8: Schematic for One-half of Fire Bearing Subsystem

16

So how is the monopulse system constructed? The schematic for half of the

monopulse system is shown in Figure 2.1.8 above. The entire system is composed of two

identical implementations.

The central component of the fire bearing system is the Burr-Brown OPT101

photodetector and transconductance amplifier. We were fortunate enough to obtain samples of

these photodetectors from Burr-Brown Corporation in order to construct this system. The

OPT101 has a built-in photodetector that outputs a current proportional to light intensity. The

OPT101 also includes a transconductance amplifier that converts the output current to a

voltage. The implementation requires that the output of the OPT101 (pin 5) be connected to

the 1-megohm feedback transconductance amplifier (pin 4) to obtain an output voltage. Since

the sensors are not matched, we included a resistor-potentiometer adjustment system (shown

above) in order to tune the output and to add more gain to the transconductance amplifier. The

output of the OPT101 is fed into a non-inverting amplifier with a gain of about 47 to increase

the output range of the sensors. The non-inverting amplifier is constructed using a TI TLC272

dual single-supply op-amp similar to the one used in the line detection subsystem. The output

of the non-inverting amplifier is then fed into the HC11 A/D converter for processing into an

8-bit number. This 8-bit value is then used in the HC11 fire detection algorithms so the

radiation patterns shown in Figures 2.1.6 and 2.1.7 are realized.

The fire bearing system works as implemented. However, there are some problems

concerning this system as it is constructed. The physical construction of the system was very

difficult, as it required shielding from all light except for a small slit for each sensor. Even

then, there were optical filters made from a floppy disk in order to cut down on the visible

light that the OPT101 can detect. The entire assembly was housed inside a Tic-Tac ™ box, as

17

this was the most discreet, efficient, and convenient method of containing the circuit board.

Static-sensitive foam was added inside of the housing to cushion the sensors against

vibrational shock. Even with all of these precautions, it is possible that light reflecting off of

the inside of the housing could be detected by the OPT101, thereby modifying the detector

voltages. Also, the adjustment assembly does not quite work as it is supposed to, as it is likely

the Thevenin equivalent of the assembly, including the 1-megohm feedback transconductance

amplifier, was modifying the output signal of the OPT101. For better adjustment, one could

modify the adjustment scheme to mirror that of the voltage reference for the line detector

amplifier in Figure 2.1.2 above.

From an electrical design standpoint, all sensor systems work as expected and to the

specifications that each individual part was designed for. There are two real-world problems

that the sensor system may encounter when the integration of the robot is completed. There

could be a problem with noise occurring in the system while the robot is moving. The physical

layout of the system on the chassis will help in reducing the possible noise. This matter is

taken up in the discussion of the chassis layout later on in this report. The other problem with

the sensor system is the layout of the sensors. The circuit boards were not efficiently designed

for connectors to be used. This was due to a lack of experience on the part of the circuit board

designer. If more time were allotted for the overall design, revisions in the circuit board layout

would allow for connectors to be used in an efficient matter in accordance with the project

specifications.

2.2 MOTOR CONTROL SUBSYSTEM

Motor control will be discussed in this section. Motor Control consists of three

major parts: pulse width modulation, H-bridges, and encoder processing. This section

18

will also discuss the attempt to run motor control independently in an Altera chip. The

reasons for the failure of this system will be discussed, as well as solutions we attempted.

2.2.1 Pulse Width Modulation

This section will explain the two methods of generating a PWM signal for use in a

small mobile robot. PWM, or Pulse Width Modulation, is used to control the robot’s

motors. The first method of generating such a signal uses the Motorola MC68HC11

microcontroller. The second method uses two Programmable Logic Devices (PLD) to

generate the PWM signal. This report will show that the second method is the most

viable.

PWM is a method of generating a variable DC signal from a non-variable DC source.

The base of this PWM signal is a square wave (shown below, in Figure 2.2.1).

Figure 2.2.1: Comparison of PWM and Pulse Signal

As the above diagram shows, a PWM signal is a signal that is set to its maximum

value for a variable amount of time. The amount of time, per period, that the signal is set

at 12 volts is referred to as the duty cycle, and given as a percentage of the total period

(or that period of time over which the signal does not repeat itself). In Figure 2.2.1

above, 10%, 50% and 90% duty cycles are shown. It is important to note four things:

19

1. A 50% duty cycle is identical to the basic pulse from which the PWM signal is

derived.

2. Given a 90% duty cycle, the signal is at 12 Volts for the majority of the time.

3. A 0% duty cycle would result in a signal that was fixed at 0 Volts.

4. A 100% duty cycle would result in a signal fixed at 12 Volts.

The PWM signal used by this robot runs at 976.56 Hz, a consequence of the

motors’ construction, as well as programming restrictions. Altera, the company that

manufactures the PLD chips used, only allows division by powers of two in Altera

Hardware Design Language, or AHDL.

To determine this frequency, simple trial and error was used. The motors were

connected to a function generator, which output an 80% duty cycle PWM signal. The

frequency, starting at 100 kHz, was then varied by increments of first 10 kHz, then 100

Hz, and lastly 10 Hz, until the motors stopped emitting a high pitched whine. The

resulting frequency was 1 kHz (1000 Hz), and 976.56 Hz was the closest frequency that

could be generated. Dividing the HC11’s E-Clock, which runs at 2 MHz, by 2048

(within the Altera chip), generated the signal.

Unfortunately, the implementation was not quite so easy. The first time the clock

divider program was written, we wrote it incorrectly. The incorrect program is shown

below.

SUBDESIGN divclk

(
CLUCK3 : INPUT; % CLOCK is a reserved word %

CLUCK2 : OUTPUT;
)

VARIABLE

DRACULA[11..0] : DFF; % COUNT Dracula. Get it? %

20

BEGIN

DRACULA[11..0].CLK = CLUCK3;

IF DRACULA[11..0] < 2048 THEN
DRACULA[11..0].d = DRACULA[11..0].q + 1;

ELSE
CLUCK2 = VCC;

END IF;
END;

Figure 2.2.2: Incorrect Clock Divider Program

This program would have worked correctly, except we made a simple error by

forgetting to reset the counter. The following, correct, program, shows this fix.

SUBDESIGN divclk
(

CLUCK3 : INPUT; % CLOCK is a reserved word %
CLUCK2 : OUTPUT;

)

VARIABLE
DRACULA[11..0] : DFF; % COUNT Dracula. Get it? %

BEGIN

 DRACULA[11..0].CLK = CLUCK3;

IF DRACULA[11..0] < 2048 THEN
DRACULA[11..0].d = DRACULA[11..0].q + 1;

ELSE
CLUCK2 = VCC;
DRACULA[11..0].d = GND;

END IF;
END;

Figure 2.2.3: Correct Clock Divider Program

There was, however, insufficient time (after the bug was found) to implement this

change.

Signal Generation:

There are two feasible methods of PWM signal generation. The first method

involves using a Programmable Logic Device (or PLD). The second involves using the

HC11’s output compare subsystem. Both methods involve programming and use the

same basic concepts.

21

The first method, writing a program to generate the PWM signal from an Altera chip,

was deemed the most feasible. There are several reasons for this.

1. Altera’s AHDL is used in a digital electronics course, so we are familiar with this

language.

2. Altera chip programmers are already installed and used in the lab (especially the

EPM7128ALC84-12 and EPM7032LC44-15).

3. Other PLD programming software may be difficult to find or have too steep of a

learning curve for a one-semester design course.

The program itself is simple. Capable of generating a PWM signal for each of the

two motors, it consists mainly of two counters, which count up to an input 8 bit value (a

desired speed, sent from the HC11). While the value of the counter is less than or equal

to the input value, a logic high (5 volts) is output on the PWM signal line. The moment

the counter’s value becomes higher than the input value, a logic low (0 volts) is output on

the PWM signal line. The overall result of this is a PWM signal, with a resolution of

1/256th of the total signal period. Since the clock signal input (a clock is necessary to run

the counters) is set at 976.56 Hz, the following calculations apply. For signal period T:

T=1/f = 1/(976.56 Hz) = 0.001024 sec = 1.024 ms

Since the period T of any signal is equal to 1 over the frequency of that signal, the period

of the PWM signal is 1.024 milliseconds. This means that the signal repeats itself every

1.024 milliseconds. The signal resolution (or minimum amount by which the signal can

change) is 1/256th of the overall period, or Signal Resolution, R is:

R = (1/256)*(0.001024) = 0.000004 sec = 4 µs

22

Since the motors are capable of change only at a very slow rate, this is more than enough

resolution. A consequence of this same principle is that the desired speed, fed as input

from the HC11) is limited to a number between 0 and 255.

 The Altera PWM program is shown below.

% OPEN LOOP PWM %
SUBDESIGN open
(

CLUCK2 : INPUT; % CLOCK is a reserved word %
R_DES_SPEED[7..0] : INPUT;
L_DES_SPEED[7..0] : INPUT;

R_PWM : OUTPUT;
L_PWM : OUTPUT;

)
VARIABLE

DRACULA[7..0] : DFF; % COUNT Dracula. Get it? %
CHOCULA[7..0] : DFF; % COUNT Chocula %

BEGIN
 DRACULA[7..0].CLK = CLUCK2;
 CHOCULA[7..0].CLK = CLUCK2;

 DRACULA[7..0].d = DRACULA[7..0].q + 1;
 CHOCULA[7..0].d = CHOCULA[7..0].q + 1;

 IF DRACULA[7..0] <= R_DES_SPEED[7..0] THEN
R_PWM = VCC;

 ELSE
R_PWM = GND;

END IF;
IF CHOCULA[7..0] <= L_DES_SPEED[7..0] THEN

L_PWM = VCC;
 ELSE

L_PWM = GND;
END IF;

END;
Figure 2.2.4: PWM Generation Program

The second method involves setting up the HC11’s OCx (or Output Compare)

pins. This subsystem takes a value, input to a register (a device capable of holding an 8

bit binary number) and compares it to a counter in much the same way as the Altera

program. A logic high (5 volts) is output while the counter is less than or equal to the

input value, and the OCx pin transitions to a logic low (0 volts) when the counter value

goes above the input value.

23

A program that can be used to implement PWM signal generation on the HC11 is

shown below.

#include <hc11.h>

#define TRUE 1
#define FALSE 0
#define PERIOD 250

void tic2_isr(void);
void toc1_isr(void);
void putint(unsigned int i);

unsigned int first, second, tr, done, DUTY_CYCLE;

main ()
{

done = FALSE;
tr = 0;
first = 0x00;
second = 0x00;

/* Setup IC2 */
TIC2_JMP = JMP_OP_CODE;
TIC2_VEC = tic2_isr;
TCTL2 = (TCTL2 | 0x08) & ~0x04; /* Capture Falling Edge */
TMSK1 = TMSK1 | 0x02;
TFLG1 = 0x02;

/* Setup OC1 to bring OC2 high with interrupt */
TOC1_JMP = JMP_OP_CODE;
TOC1_VEC = toc1_isr;
OC1M = OC1M | 0x40;
OC1D = OC1D | 0x40;
TMSK1 = TMSK1 | 0x80;
TFLG1 = 0x80;
TOC1 = PERIOD;

/* Setup OC1 to bring OC2 low w/o interrupt */
TCTL1 = (TCTL1 | 0x80) & ~0x40;

enable(); /* General interrupt enable */

while (!done);
tr = second - first; /* Calculate Time Elapsed */
putint(tr);

}

#pragma interrupt_handler tic2_isr
void tic2_isr (void)
{

if (!first)
{

first = TIC2;
}
else
{

second = TIC2;
}

24

if (second)
{

done = TRUE;
}
TFLG = 0x02;

}

#pragma interrupt_handler toc1_isr
void toc1_isr (void)
{

unsigned int DUTY_CYCLE;

DUTY_CYCLE = PORTC & 0x07; /* Mask out lower 3 bits */
DUTY_CYCLE = 25 * (DUTY_CYCLE + 2);
TOC2 = TOC1 + DUTY_CYCLE;
TOC1 = TOC1 + PERIOD;
TFLG1 = 0x80;

}

void putint(unsigned int i)
{

asm (“ jsr 0xffc1”);
asm (“ jsr 0xffc4”);

}

Figure 2.2.5: Sample HC11 code for PWM Generation

The Altera PLD chip and the HC11 subsystem are the two most feasible methods

of generating a PWM signal. Both involve programming. The Altera program, however,

is much more simple, and contains much less that is capable of malfunctioning. In

addition, the HC11 is very busy with other functions, and its workload is already

approaching a dangerous level. Therefore, we decided to generate the PWM signal in

Altera.

2.2.2 H-Bridge Motor Drivers

Upon working with our motor control subsystem, a suitable motor driver was

necessary to be able to change motor speeds and directions. Looking through all of our

options, we chose the LMD18200 H-bridge package from National Semiconductor. Although

this is not a dual bridge package capable of running both motors from the same chip, the EE

Department provided us two of these H-bridges. We decided to use them in order to minimize

25

cost. The H-bridge takes the PWM and direction signal inputs and outputs a signal to the

motor that turns the wheels in both the direction and speed desired.

Our group decided to simulate PWM in Altera. This was discussed in the

previous section. We generated one PWM signal for each motor out of Altera and a

direction line for each motor out of the Motorola 68HC11 microcontroller. Each of these

lines is a digital signal that is fed into the H-bridge. A 12V battery was attached to the H-

bridge to supply power to the circuit and to convert the digital PWM signal into a 0-12V

output to the motors. Based on the weight of our robust design (about 15 lbs.), the robot

would not move unless the motors were supplied with this increase in PWM amplitude.

The encoders then send back a signal to the HC11 to tell it how quickly the motors are

spinning. Knowing this rotation speed, and that the encoders send out 500 pulses per

rotation, Altera approximates the current actual speed. Using this actual speed

measurement, we compare it to a desired speed number and determine whether we need

to slow down or speed up. A block diagram of what the circuit entails is included below:

Figure 2.2.6: Block Diagram of Motor Control Subsystem

Next we have to consider that the H-bridge must be fit into the circuit properly,

otherwise, it will not output what it is supposed to. Using the National Semiconductor

26

Data Sheet for the LMD18200, we constructed two boards using the circuit schematic

shown below:

Figure 2.2.7: Schematic for LMD18200 H-bridge Motor Driver

Using this schematic and the block diagram from Figure 2.2.6, we constructed a

feasible motor control subsystem. However, we had issues with the boards from the start.

We had to design a printed circuit board that would hold the entire H-bridge circuit

design. We drew up a board layout that would allow us to make the proper pin

connections from the H-bridge to the resistors and capacitors on the board. Upon tracing

the layout on the first board and etching it, we found that the board was etched

backwards. The H-bridge had to be put on the copper side rather than the component

side. This makes soldering the components to the board next to impossible. We mirror-

imaged the layout such that the proper etching design would be achieved and etched

another board. Upon doing this, we soldered all of the components onto the board and

found it to be an almost flawless design.

27

We then hooked up the H-bridges to the motors to see if they would drive them

properly. After only about a minute of testing, a component on the board exploded. The

polarized filter capacitor had been soldered on the board backwards. After correcting this

oversight, we tried again. This time we noticed we had a few loose soldering

connections. One of them involved ground not being connected from the copper to the

H-bridge. Without this ground reference, the H-bridge would not be able to determine

that the power source was at a 12V potential. Upon fixing these soldering problems, and

hooking the H-bridge up to all necessary input and output lines, they both worked

flawlessly.

2.2.3 Encoder Processing

The initial design for encoder signal processing was two customized pulse

accumulators, one for each motor, and a divider for the HC11's E-clock programmed into

an Altera chip. The circuitry for each pulse accumulator consisted of an eight bit counter,

an eight-bit shift register and an eight-bit latch. The E-clock divider consisted of a single

eight bit counter, which divided the E-clock down to produce a clock signal at 7.8 kHz.

The encoder signal was passed through the eight bit counter to reduce the number of

pulses received during a single clock cycle. This reduced signal was then passed to a

shift register to convert it from a serial signal to an eight bit parallel number. This

parallel number was then passed to the latch, which was triggered by the clock signal.

This eight-bit number and modified clock signal were then passed to the closed loop

controller program, which was also programmed in Altera. The overall block diagram of

the initial system is shown in Figure 2.2.8 below.

28

Figure 2.2.8: Encoder Signal Processing Design

This design proved less than ideal. The first problem arose from the fact that the latch

and shift register were both triggered by the same clock signal at the same frequency. This

problem was easily remedied; the clock line for the shift register was taken from a lower order

bit on the E-clock's counter. This allowed the shift register to output the complete eight-bit

number before it was latched. After this simple but effective modification the encoder signal

processor worked as planned under simulation but it still failed to correctly interface with the

actual systems of the robot. These interface problems were caused by a failure to meet the

shift register’s timing requirements.

In the second design, the shift register was removed and the needed data was taken

directly from the counter. However, it was then discovered that the clock rate was incorrect

for system requirements. To remedy this, the clock was replaced within the encoder signal

processing circuitry by a chip select line ran from the HC11. This design, however, had too

much resolution for the rest of the motor control components to process.

29

Figure 2.2.9: Second Encoder Processing Design

The next step in correcting the many problems with motor control was to reintroduce a

divider to reduce the number of pulses received by encoder signal processing and the rest of

the motor control system. It was soon discovered that even with reduced resolution, the

encoder signal processing still inexplicably failed to function.

Figure 2.2.10: Third Encoder Processing Design

After weeks of designing, wire wrapping and testing each of these encoder signal

processors the decision was made to attempt to program the closed loop portion of the motor

control into the HC11. There are two reasons why we decided to move most of the motor

control in the HC11. First, it would be difficult to modify motor constants. Second, it would be

30

extremely difficult to implement a proportional or integral motor control in Altera without first

designing a floating-point processor and arithmetical logical unit for use in Altera. It was also

decided to only use one 128-logic-cell Altera chip to run the PWM portion of the motor

control.

Attempting to run motor control independent of the HC11 is not, in hindsight, a

feasible possibility for a one-semester course. It is both easier and more efficient (as a

system which does not work cannot be labeled efficient) to leave motor control to the

HC11. Pulse Width Modulation, however, can easily be generated, and the encoder

signals resolved into something usable, in a single EPM7128ALC84-12 Altera chip.

2.3 HC11 CONTROL CODE

The requirements laid out for the robot state that the control program be written in the

C programming language for the HC11. The control code has been included in Appendix A

for continuity reasons. A flowchart describing the overall HC11 control code is shown in

Figure 2.3.1 below.

Figure 2.3.1: Flowchart for HC11 Control Code

31

The overall goal of the HC11 code is to be as modular as possible with minimal events

occurring when interrupts are active. Currently, the control code is incomplete, as we were in

the process of writing code to make the robot follow the right wall.

The status of the code is as follows:

• The code has not been tested or compiled.

• The initialization of most of the variables, interrupts, and functions are complete.

• The constants concerning most of the comparisons have not been tested and verified.

• The wall-following code is complete, but it will not detect the so-called “fourth

room” where normal wall following bypasses it.

• Motor control is currently incomplete. As of this report, it was in the process of being

refined to include as few floating-point operations as possible, since the HC11 does

not contain a floating-point coprocessor.

• The line-detection code is complete.

• The fire detection code has been pseudo-coded but not translated into C code.

• The fire suppression code once the fire has been detected has been written but not yet

tested.

• No optimization whatsoever concerning individual rooms has been completed.

• Any code to add additional features such as returning to the home circle once the fire

was extinguished has not been written.

As of this report, several of the HC11 interrupts are being used to trigger key

events for the robot. The Real Time Interrupt (RTI) is being triggered every 8

milliseconds to tell the HC11 to do the closed-loop motor adjustments and calculations.

32

The Timer Overflow Interrupt (TOF) is used to trigger a wall-following calculation every

32 milliseconds. The line sensors are tied to two Timer Input Capture Interrupts (TIC) so

the HC11 can sense when the robot is going into a room. The TIC interrupt is set up to

where the HC11 receives a rising edge on the input capture pins. Currently, the PIA

expansion port is set to receive data off of some external connection, but one can use the

Interrupt Request Interrupt (IRQ) in order to receive or send data to an external

connection.

The basic wall following code is in place. Figure 2.3.2, below, shows the logic

of the wall following process.

Figure 2.3.2: Wall Following Block Diagram

There are some features that are in the code that make debugging and addition of

code easier. For modularity of code and for easier debugging, a large percentage of the

33

code is written as functions. A minimal amount of work is done within the interrupt

routines in order for the HC11 to service other routines in a quick manner. The main loop

does a minimal amount of work except when an interrupt flag is triggered. Most of the

control code is heavily commented so other designers know what is going on within it.

Overall, while the design of the control code is in its early stages, we are making sure the

reliability of the code is extremely high from the start.

2.4 FIRE SUPPRESSION

Once the fire is located, the robot must take steps to extinguish the flame. Several

options are available for accomplishing this task. The first of these options is a small fan,

which blows out the flame. We elected to use a small stream of water to extinguish the candle

flame. Each of these options has its advantages. However, we feel that the water stream is the

most viable solution, being applicable to the widest range of possible fires.

The water stream method, in turn, requires several things:

1. A Water Tank

2. A Water Pump

3. Rubber Hosing and Nozzles

4. Sprinkler Head

5. Secondary Batteries

6. Interface Circuitry

A diagram of the entire fire suppression subsystem is shown in Figure 2.4.1 below.

34

Figure 2.4.1: Fire Suppression Subsystem

2.4.1 Water Tank

The water tank was constructed from a plastic salt and pepper shaker set. Each,

individually, was capable of holding 4 ounces of water. To increase the total capacity, the

bottom was cut out of one of the canisters. The canisters were then sealed together using

epoxy. Epoxy, however, proved vulnerable to the liquid mixture used in place of water (glass

cleaner with ammonia and water). The epoxy seals were turned into a rubbery substance by

the glass cleaner. Hot Glue was found to be a viable substitute.

2.4.2 Water Pump

The water pump was taken from a 1987 Dodge Colt windshield washer pump

assembly. The motor, obtained for the cheap price of $5, was comparable to other pumps

found on the Internet for $40 or more. The pump, made by Nippondenso Company, operated

35

at 12 Volts and drew 1 ampere of current. This was more than sufficient for our needs, and

drained the tank in less than 20 seconds.

2.4.3 Rubber Hosing and Nozzles

Eight feet of rubber hosing was obtained from Ace Hardware. Assorted nylon nozzles

were used to mate the rubber hosing to the water tank, pump, and sprinkler head. Epoxy was

used to seal the nozzles to the water tank and pump, as the ammonia solution was not in

contact with it. The nozzle used to mate the water pump to the hosing had to have its

threading in order to fit.

2.4.4 Sprinkler Head

A simple sprinkler head, obtained from Ace Hardware, was used to direct and

concentrate the stream of ammonia solution. The sprinkler head, normally used to widen a

stream of water to soak a wide area, was altered using hot glue. The effect of this alteration

was to narrow the liquid stream by sealing all but the center portion with hot glue.

2.4.5 Secondary Batteries

Secondary batteries were needed, due to the massive power consumption of the total

fire suppression system. 12 Volts, at 1 Amp, even for the 20 seconds needed to completely

drain the water tank, would drain the main battery of too much power. To fix this problem,

secondary batteries were obtained. Meant to power answering machines, two batteries, each

capable of 550 mA at 3.6 volts, were obtained for the water pump.

36

2.4.6 Interface Circuitry

Due to time constraints, the circuitry to interface the fire suppression system to the

HC11 was not built. Had time constraints allowed its construction, figure 2.4.2 below shows

what it would have looked like.

Figure 2.4.2: Interface Circuitry for Fire Suppression Subsystem

2.5 POWER BOARD IMPLEMENTATION

The implementation of the robot we have designed requires a variety of DC

voltages in order to operate in an efficient manner. For instance, the HC11 and sensor

system requires 5 volts, the motors require 12 volts, and the Altera PLD requires between

3.3 and 4.5 volts. Our current robot design uses one 12-volt battery as its primary source

of power. Hence, it is desirable to use a system in order to step down the 12-volt battery

source into 5-volt systems to assure proper operation of the sensors and digital devices

37

and to prevent a catastrophic failure of individual components. We decided to go along

with two separate DC-to-DC converter implementations for the robot. The first converter

outputs 5 volts for the sensor systems. The other converter is made adjustable for the

varying requirements for the Altera device and the HC11.

The schematic for the 5-volt regulator is shown in Figure 2.5.1 below.

Figure 2.5.1: Schematic for a 5-Volt Converter From a 12-V Battery

This circuit is relatively trivial. We used a 7805 voltage regulator wired as above in order to

step down the battery to a 5-volt source for the sensors. The maximum current output of the

7805 used is approximately one ampere. This is more than enough current to source all of the

sensors with their required power.

The second voltage converter schematic is shown in Figure 2.5.2 below.

Figure 2.5.2: Schematic for an Adjustable Voltage Converter and Regulator

The basic concept of the schematic shown above was taken from a circuit idea in National

Semiconductor’s Power IC Data book. The LM317 is an adjustable voltage regulator that

38

outputs between 1.5 and 28 volts dependent on the design of the additional circuitry and the

input voltage to the regulator. The capacitors are included in the design to filter out noise and

to make the output more stable. For reasons unknown at this time, the resistor connecting the

output terminal to the adjustment terminal on the LM317 should be near 240 ohms. The

resistor combination connecting the adjustment terminal of the LM317 to ground is the

method of voltage adjustment. The resistor-potentiometer combination provides an equivalent

resistance for the LM317 so that it can produce an output voltage defined by

Vout = 1.25 * (1 + R2/R1)

Where R1 is the feedback resistor between the output and adjustment pins of the LM317 and

R2 is the resistance seen between the adjustment terminal of the LM317 and ground. The

output of the voltage regulator is as follows. When the potentiometer is adjusted to 0 ohms, the

equivalent resistance of R2 is seen to be approximately 600 ohms; hence the output voltage is

calculated at about 4.02 volts. When the potentiometer is adjusted to be 10 kilohms, the

equivalent resistance of R2 is approximately 1084 ohms, and the output voltage should be

about 6.27 volts. However, due to tolerances with the resistors, some slight variation will

result with the maximum and minimum output voltages. Each of the LM317 regulators can

source a maximum current of one ampere, so the power requirements of the HC11 and the

Altera device are satisfied with ease.

We used two of these adjustable regulators in the robot. One of these regulators is

for the exclusive use of the Altera PLD chip, as it requires operation at a slightly lower

voltage than 5 volts. The second regulator is for the HC11 microprocessor, as it has a

tendency to reset itself if the source drops below a voltage around 4.5 volts. On the

recommendation of Dr. Stephen Bruder, we are running the HC11 at a supply voltage of

39

approximately 5.2 volts in order to prevent accidental resets while the robot is moving

around the maze. There are also additional connection terminals if the 7805 is not able to

source enough current to adequately power all of the power system.

To make sure the voltage regulators were able to supply the maximum current

possible, heat sinks were installed and heat-sinking compound was applied to the voltage

regulators in order for them to dissipate the required heat. The power board is fully

operational and supplies the voltages required by other subsystems. The minimum and

maximum voltages from the adjustable voltage regulators are very close to the calculated

voltages using the formula above.

2.6 CHASSIS DESIGN

Chassis design began with a disc-shaped aluminum plate with two motors

attached by aluminum "L"-brackets in a differential drive configuration that was centered

on the disc. Moving the motors forward by the width of the mounting brackets and the

addition of a rear caster wheel altered this basic design. The new configuration, while

providing a more stable base, still allowed the robot to maintain the turn-in-place

capability that is necessary for maneuvering in the tight confines of the maze. To add

further stability and to save space, the battery was attached, with Velcro, to the bottom of

the base between the motors and the caster wheel. By placing the single heaviest

component on the bottom of the robot, the center of gravity was relocated significantly

lower on the robot. After completing these alterations to the basic design of the base

several other modifications were required to attach necessary and vital equipment.

First, a number of different sized holes were drilled in the base. These holes were

drilled to allow for wiring, the attachment of the power board, the H-bridges, which were

40

attached using one inch hex standoffs, and white line sensors, which were attached using

hot glue. They were also drilled for the placement of three-eighths inch all-thread, which

was chosen for the structural strength it added to the robot chassis. This all-thread was

secured to the base with hex nuts and lock washers on the top and bottom of the base.

See Figure 2.6.1 below:

Figure 2.6.1: Bottom View of Base

The water pump and tank were attached to the bottom level with Hot Glue. Next,

to ensure stability when filled, the tank was also braced with nylon cable ties that were

then attached to the all-thread. Finally, the second and third levels of the robot were

connected to the base via the all-thread by drilling slotted holes for the all-thread to pass

through. The additional levels were then secured by hex nuts resting on one and one-half

inch flat washers to prevent the nuts from cutting into the masonite. See Figure 2.6.2 on

the next page.

41

Figure 2.6.2: Top View of Base

The second and third levels were cut from a sheet of masonite; a composite material

resembling compressed cardboard, which was chosen for a number of reasons. The main

reasons for choosing masonite were weight, rigidity, price, and availability. Masonite is a

very lightweight material that is extremely rigid in small sections. It is also inexpensive, a

four-foot by eight-foot sheet of one quarter-inch masonite costs about twelve dollars, that is

approximately one quarter the cost of sheet aluminum, and can be found at most lumber yards

and many hardware stores.

The second level had to have holes drilled into it so we could mount the wall

sensors and wall sensor board. The wall sensor board was mounted using one-inch hex

aluminum standoffs. Then a larger hole was drilled into the center of the second level to

pass wires through. It was then discovered that the water tank was too tall to fit between

the base and second level. This required that a large slot be cut in the second level, which

allowed the water tank to pass through the masonite and to rise above the second level.

42

Finally, a three-eighths inch hole was drilled through the second level for the placement

of the water pumps pressure hose and the spray nozzle. The nozzle was then secured into

position with more hot glue. See Figure 2.6.3 below:

Figure 2.6.3: Second Level of Chassis

The third level was drilled to accept the Altera motor control board, the HC11

board, the fire sensor board, which were all mounted using standoffs, and the fire sensor,

which was mounted using two one quarter inch nylon cable retainers placed in opposing

directions. The monopulse radar fire detection system was then attached to the third level

using self-adhering Velcro strips.

Figure 2.6.4: Third Level of Chassis

43

The primary reason for the distribution of the high power vs. low power systems

is noise. With all of the high power systems on the base, there is a high level of noise

that can cause signal bounce. To ensure that the HC11 and the Altera chip experienced

the smallest amount of noise possible, it was necessary to move them as far away from

the high power circuitry as possible. With the noise sensitive equipment on the third

level, there were three levels of protection from noise. This design ensured that noise

would not be an issue.

2.7 BUDGET ANALYSIS

For this project, our group was given a budget of $100 along with the starter kit

provided by the EE department. This starter kit includes:

• 2 – Pittman GM9434 DC Servo Motors with Encoders and wheels

• 2 – LMD18200 H-bridge Motor Drivers

• 1 – 12” circular aluminum sheet for the chassis

• 1 – 12V Camcorder battery

• Connectors, chip puller, wire strippers, logic probe

Items that were available to us, through check out or by other means include:

• Threadlock and all-thread

• Velcro

• Shielded 4-conducter cable

• Copper circuit board

• Phone connector crimper

Using our budget of $100, our group acquired many more necessary parts for our robot.

Using the parts acquisition sheet, found on the EE 382 web page, we bought a variety of

44

sensors, chips, and other parts necessary to build a completely autonomous system. An

itemized list of the parts we bought can be found in Appendix B.

We used a variety of different companies to acquire the parts we needed. These

companies include National Semiconductor, Digikey, Wyle, Burr-Brown, QT

Optoelectronics, and Texas Instruments. These items include the voltage regulators, our

EPM7128ALC64-12 Altera PLD, and a majority of the sensors that we needed for the

robot.

The above companies as well as the EE Department donated a substantial portion

of the items we used. These items will be denoted as donated in Appendix B as well as

the pie chart below.

Figure 2.7.1: Pie Chart of Group 7 Budget Usage

Based on this chart, our group was well within the $100 budget given to us by the EE

department. Since we were concerned about going over budget, we decided to purchase some

of the “unnecessary” items ourselves. These items, including a larger diameter threadlock, fall

under the “Group Member Purchases” section of the pie chart. If we had put all of our

Group 7 Final Budget

$0.00

$59.55

$41.14

$40.45

Provided by EE Department Budget Purchases
Group Member Purchases Unused Budget

45

individual purchases on the $100 budget, we would have been $0.69 over budget. When

working under a budget ceiling, it is a good idea not to use more money than we have

available. Doing so can cause the customer to wonder what their money is being used for.

Thus, by not going over budget, the customer will be satisfied that his money is being used

carefully.

3 CONCLUSION

We have determined that complete motor control from within Altera chips is not

feasible for a single semester course. Two semesters might make it possible, but this

group harbors serious doubts about whether it can even be done. Had we not spent so

much time attempting to make Altera chips hold the substance of motor control, we feel

we would have completed the project.

Sensors are fully functional on their own. PWM is functional from within an

Altera chip, but still needs to be integrated with the other motor control subsystems. The

H-bridges work as constructed, but also need to be tested in concert with other motor

control subsystems. Encoder signal processing from within an Altera chip simulates

correctly, but has not yet been physically tested. Fire suppression lacks the interface

circuitry to work with the HC11.

We estimate that another month would be needed to fully integrate and test all

systems to make Pokey move. The course, however, is over, and our time is up.

46

BIBLIOGRAPHY

Altera Corporation. (1994). MAX+PLUS II Programmable Logic Development System
AHDL. San Hose, CA: Altera Corporation.

Burr-Brown Corporation. “Burr-Brown Products.” Burr-Brown Web Site.
http://www.burr-brown.com/Products/Products.html (May 10, 1999).

Digi-Key Corporation. “Digi-Key Part Search” Digi-Key Web Site.
http://www.digikey.com/DigiKeySearch.html (May 10, 1999)

Jameco Electronics. “Jameco Electronics: On-Line Catalog”
http://www.jameco.com/Catalog/ (May 10, 1999)

Jones, J.L., Sieger, B. A., and Flynn, A. M. (1999). Mobile Robots: Inspiration to
Implementation. Natick, MA: A. K. Peters.

Kamen, E. and Heck, B. (1997). Fundamentals of Signals and Systems Using Matlab.
Upper Saddle River, NJ: Prentice Hall.

National Semiconductor. “The Design Engineer Resource.” National Semiconductor
Web Site. http://www.national.com/design/index.html (May 10, 1999)

Tandy Corporation. “Radio Shack – You’ve Got Questions. We’ve got answers.”
http://www.radioshack.com/ (May 10, 1999).

Wedeward, K. “EE 382.01 Resources.” New Mexico Tech Electrical Engineering
Department Homepage.
http://www.ee.nmt.edu/~wedeward/EE382/SP99/resources.html (Jan. 19, 1999).

Wyle Electronics. “Wyle Web Site” Wyle Web Site. http://www.wyle.com
(May 10,1999).

47

Appendix A: Data Files and C Code for Pokey

Figure 1: First Attempt at Motor Control in Altera (Part 1)

48

Figure 2: First Attempt at Motor Control in Altera (Part2)

Figure 3: Second Attempt at Motor Control in Altera (Part 1)

49

Figure 4: Second Attempt at Motor Control in Altera (Part 2)

50

Figure 5: Encoder Signal Processing in Altera (Final Attempt)

51

L R
_ _
A P R R
C A E E E
T R _ S S
_ R T C E E
S _ _ L R R
P P E V G G G O G V V
D W N C N N N C N E E
6 M C C D D D K D D D

-----------------------------------_
/ 6 5 4 3 2 1 44 43 42 41 40 |

L_ACT_SPD7 | 7 39 | L_ENCODE
L_ACT_SPD2 | 8 38 | LWANT4
L_ACT_SPD3 | 9 37 | LWANT5

GND | 10 36 | L_PWM
L_ACT_SPD4 | 11 35 | VCC
L_ACT_SPD5 | 12 EPM7064LC44-12 34 | LWANT6

RWANT1 | 13 33 | LWANT7
RWANT0 | 14 32 | RWANT6

VCC | 15 31 | RWANT2
RWANT4 | 16 30 | GND
RWANT5 | 17 29 | RWANT7

_ 18 19 20 21 22 23 24 25 26 27 28 _

L L L L G V L R L L R
W W _ _ N C W W W _ _
A A A A D C A A A E E
N N C C N N N N N
T T T T T T T A C
0 1 _ _ 3 3 2 B O

S S L D
P P E E
D D
1 0

N.C. = Not Connected.
VCC = Dedicated power pin, which MUST be connected to VCC.
GND = Dedicated ground pin or unused dedicated input, which MUST be
connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.

Figure 5: Pinout, First Attempt at Motor Control in Altera (Part 1)

52

R R R R R R
R D D D D R D _ R R R R
_ E E E E E E E E E E E E
E S S S S S S V N _ R S S S R S
N _ _ _ _ E _ C C C W E E V E W E
A S S S S R S C O L A R R C R A R
B P P P G P V P I D G G O G N V V C V N V
L D D D N D E D N E N N C N T E E I E T E
E 3 6 1 D 5 D 7 T R D D K D 7 D D O D 3 D

---_
/ 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 |

RDES_SPD2 | 12 74 | RESERVED
VCCIO | 13 73 | RWANT0
#TDI | 14 72 | GND

LWANT5 | 15 71 | #TDO
LDES_SPD1 | 16 70 | RESERVED
LDES_SPD0 | 17 69 | RESERVED
LDES_SPD5 | 18 68 | LWANT7

GND | 19 67 | LWANT1
LWANT3 | 20 66 | VCCIO

RDES_SPD0 | 21 65 | LWANT0
L_ENCODER | 22 EPM7128ALC84-10 64 | LWANT2

#TMS | 23 63 | LWANT4
RESERVED | 24 62 | #TCK
LDES_SPD6 | 25 61 | RESERVED

VCCIO | 26 60 | RESERVED
LDES_SPD2 | 27 59 | GND
RDES_SPD4 | 28 58 | RESERVED

LWANT6 | 29 57 | RESERVED
CLUCK1 | 30 56 | RESERVED

LDES_SPD7 | 31 55 | RESERVED
GND | 32 54 | RESERVED

_ 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 _

R R R R L V R L L G V R R R G R R R R R V
W W W E D C W _ D N C E W E N E E E E E C
A A A S E C A E E D C S A S D S S S S S C
N N N E S I N N S I E N E E E E E E I
T T T R _ O T A _ N R T R R R R R R O
4 5 2 V S 1 B S T V 6 V V V V V V

E P L P E E E E E E E
D D E D D D D D D D D

4 3

N.C. = Not Connected.
VCCINT = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
VCCIO = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
GND = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.

Figure 6: Pinout, First Attempt at Motor Control in Altera (Part 2)

53

L L L L
_ _ _ _

R A R A A R R R R L R D
E C E C C R L _ E E E _ E E
S T S T T _ _ V E S S S E S S
E _ E _ _ W W C N E E E V N E _
R S R S S A A C C R R R C A R S
V P V P G P N N I G G G O G V V V C B V P
E D E D N D T T N N N N D N E E E I L E D
D 7 D 1 D 6 5 2 T D D D E D D D D O E D 6

---_
/ 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 |

E_CLOCK | 12 74 | L_DES_SPD4
VCCIO | 13 73 | RESERVED
#TDI | 14 72 | GND

R_WANT0 | 15 71 | #TDO
L_WANT3 | 16 70 | R_DES_SPD7
L_WANT7 | 17 69 | L_DES_SPD7

L_DES_SPD0 | 18 68 | L_DES_SPD5
GND | 19 67 | RESERVED

L_DES_SPD1 | 20 66 | VCCIO
L_DES_SPD2 | 21 65 | L_ACT_SPD4
L_DES_SPD3 | 22 EPM7128ALC84-10 64 | RESERVED

#TMS | 23 63 | R_ENABLE
L_WANT4 | 24 62 | #TCK

L_ACT_SPD3 | 25 61 | RESERVED
VCCIO | 26 60 | RESERVED

R_WANT3 | 27 59 | GND
L_ACT_SPD2 | 28 58 | R_DES_SPD6

R_WANT2 | 29 57 | RESERVED
RESERVED | 30 56 | RESERVED
R_WANT1 | 31 55 | R_DES_SPD4

GND | 32 54 | L_ACT_SPD0
|_ 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 _|

--
R R L R R V L R R G V R R R G L L R L R V
_ _ _ _ E C _ _ _ N C E _ _ N _ _ _ _ E C
W W W D S C W D W D C S D D D W W D A S C
A A A E E I A E A I E E E A A E C E I
N N N S R O N S N N R S S N N S T R O
T T T _ V T _ T T V _ _ T T _ _ V
7 6 6 S E 5 S 4 E S S 1 0 S S E

P D P D P P P P D
D D D D D D
1 2 3 5 0 5

N.C. = Not Connected.
VCCINT = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
VCCIO = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
GND = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.

Figure 7: Pinout, Second Attempt at Motor Control in Altera (Part 1)

54

L R
_ _
A P R R
C A E E E
T R _ S S
_ R T C E E
S _ _ L R R
P P E V G G G O G V V
D W N C N N N C N E E
6 M C C D D D K D D D

-----------------------------------_
/ 6 5 4 3 2 1 44 43 42 41 40 |

L_ACT_SPD7 | 7 39 | L_ENCODE
L_ACT_SPD2 | 8 38 | LWANT4
L_ACT_SPD3 | 9 37 | LWANT5

GND | 10 36 | L_PWM
L_ACT_SPD4 | 11 35 | VCC
L_ACT_SPD5 | 12 EPM7064LC44-12 34 | LWANT6

RWANT1 | 13 33 | LWANT7
RWANT0 | 14 32 | RWANT6

VCC | 15 31 | RWANT2
RWANT4 | 16 30 | GND
RWANT5 | 17 29 | RWANT7

_ 18 19 20 21 22 23 24 25 26 27 28 _

L L L L G V L R L L R
W W _ _ N C W W W _ _
A A A A D C A A A E E
N N C C N N N N N
T T T T T T T A C
0 1 _ _ 3 3 2 B O

S S L D
P P E E
D D
1 0

N.C. = Not Connected.
VCC = Dedicated power pin, which MUST be connected to VCC.
GND = Dedicated ground pin or unused dedicated input, which MUST be
connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.

Figure 8: Pinout, Second Attempt at Motor Control in Altera (Part 2)

55

R R R R
E E E E
S L L L L L V S S S
E _ _ _ _ _ C R C R E E V E R R

L R D D D D D C _ L A R R C R A _
_ V E E G E E E I E G G O G C V V C V C P
E E S S N S S S N N N N C N T E E I E T W
N D 3 4 D 5 6 7 T C D D K D 0 D D O D 7 M

---_
/ 11 10 9 8 7 6 5 4 3 2 1 84 83 82 81 80 79 78 77 76 75 |

L_ENC | 12 74 | RESERVED
VCCIO | 13 73 | RESERVED
#TDI | 14 72 | GND

R_DES6 | 15 71 | #TDO
R_DES0 | 16 70 | RESERVED
R_DES7 | 17 69 | LACT1
L_DES0 | 18 68 | RESERVED

GND | 19 67 | LACT0
L_DES1 | 20 66 | VCCIO
L_DES2 | 21 65 | RESERVED

RESERVED | 22 EPM7128ALC84-10 64 | L_PWM
#TMS | 23 63 | LACT2

RESERVED | 24 62 | #TCK
RESERVED | 25 61 | RACT1

VCCIO | 26 60 | RESERVED
R_DES1 | 27 59 | GND

RESERVED | 28 58 | RESERVED
R_DES4 | 29 57 | RACT5

RESERVED | 30 56 | RACT4
R_DES5 | 31 55 | RACT3

GND | 32 54 | RACT2
_ 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 _

R R R R R V R R R G V L L L G L R L R R V
E _ E E _ C E E _ N C A A A N A A A E E C
S E S S D C S S D D C C C C D C C C S S C
E N E E E I E E E I T T T T T T E E I
R R R S O R R S N 5 6 7 4 6 3 R R O
V V V 2 V V 3 T V V
E E E E E E E
D D D D D D D

N.C. = Not Connected.
VCCINT = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
VCCIO = Dedicated power pin, which MUST be connected to VCC (3.3 volts).
GND = Dedicated ground pin or unused dedicated input, which MUST be connected to GND.
RESERVED = Unused I/O pin, which MUST be left unconnected.

Figure 9: Pinout, Encoder Signal Processing and PWM in Altera

56

SUBDESIGN whip
(

R_ACT_SPD[7..0] : INPUT;
L_ACT_SPD[7..0] : INPUT;
R_DES_SPD[7..0] : INPUT;
L_DES_SPD[7..0] : INPUT;

R_WANT_SPD[7..0] : OUTPUT;
L_WANT_SPD[7..0] : OUTPUT;

)

BEGIN

IF R_ACT_SPD[7..0] == R_DES_SPD[7..0] THEN
R_WANT_SPD[7..0] = R_ACT_SPD[7..0];

ELSIF R_ACT_SPD[7..0] < R_DES_SPD[7..0] THEN
R_WANT_SPD[7..0] = R_ACT_SPD[7..0] + 10;

ELSIF R_ACT_SPD[7..0] > R_DES_SPD[7..0] THEN
R_WANT_SPD[7..0] = R_ACT_SPD[7..0] - 10;

END IF;
IF L_ACT_SPD[7..0] == L_DES_SPD[7..0] THEN

L_WANT_SPD[7..0] = L_ACT_SPD[7..0] + 10;
ELSIF L_ACT_SPD[7..0] < L_DES_SPD[7..0] THEN

L_WANT_SPD[7..0] = L_ACT_SPD[7..0] + 10;
ELSIF L_ACT_SPD[7..0] > L_DES_SPD[7..0] THEN

L_WANT_SPD[7..0] = L_ACT_SPD[7..0] - 10;
END IF;

END;

Figure 10: Closed Loop Motor Control in Altera Attempt, Program “whip.tdf”

57

/* EE 382 Group 7 Code
 * Michael Schumacher
 * Shawn McVay
 * Gerald Weed
 * Jack Landes
 *
 * Initial creation date: 7 April 1999
 * Modification date: 3 May 1999
 *
 * Purpose: To see if the HC11 can drive the robot.
 *
 * Notes:
 * This code is not complete as of yet. This code should essentially do wall
 * following. Some sensor code is written, but the fire stuff right now is
 * pseudocoded as of now.
 *
 * Order of code:
 *
 * 1. Init. variables and interrupts.
 * a. RTI interrupt
 * b. TOF interrupt.
 * c. PIA expansion Ports A and B.
 * d. A/D converter.
 * e. TIC1 & 2 interrupt.
 * 2. Sensor code.
 * 3. Motor control code.
 * 4. Other stuff.
 */

/* Lovely #include and #define statements. */
/* Need definitions for Altera addresses and other fun things. */
#include <hc11.c>
#include "pia.h"
#define TRUE 1
#define FALSE 0
#define MAXSPD 3000
#define STRAIGHT 0.6
#define STOP 0.0
#define SLOWER 0.4
#define FASTER 0.8
#define FULLBORE 1.0
#define DELAY 300
/* These are set dependent on sensor calibration. */
#define WALLHUG 0xCA
#define WALLFAR 0x65
#define CLOSEFRONT 0xCA
#define DET_FIRE 0x30
/* These are for the Altera EPM 7128 chip. */
#define LEFTENC (*(unsigned char *) 0xB100)
#define RIGHTENC (*(unsigned char *) 0xB200)
#define LEFTPWM (*(unsigned char *) 0xB300)
#define RIGHTPWM (*(unsigned char *) 0xB400)

/* Function declarations. */
void rti_isr(void);
void tof_isr(void);

58

void tic1_isr(void);
void tic2_isr(void);
char smokey(void);
char kill_nine(void);
void out2bytes(unsigned int n);
void out1byte(unsigned char n);
void send_altera(void);
void recv_altera(void);
void poll_fire(void);
void poll_wall(void);
char extinguish(void);

/* Variable declarations. */
char fire_out = FALSE; /* Is the fire out? */
unsigned char rf, rr, lf; /* Sensor definitions. */
unsigned char front; /* Distance to FRONT WALL. */
char in_room = FALSE; /* Are we there yet? In a room, that is. */
char is_fire = FALSE; /* Have we found the fire yet? */
unsigned char mono_left, mono_rt, ranger; /* Fire sensor stuff. */
float l_des, r_des; /* Desired motor speed variables. */
float l_act, r_act; /* Actual motor speed variables. */
unsigned char l_enc, r_enc; /* What's coming off the encoders. */
unsigned char lencprev, rencprev; /* Last value of the encoders. */
unsigned char l_pwm, r_pwm; /* What we're sending off to the PWM. */
float Kp_left, Kp_right; /* Constant of proportionality for P motor control. */
float m; /* Conversion factor for motor speed to 8 bit Encoder speed. */
float lspdfact, rspdfact; /* Speed factor (between 0 and 1) for desired spd. */
char calc_dc_flag = FALSE; /* Do we have to check the motors? */
char check_wall = FALSE; /* Do we have to check for the walls? */
char l_rev = FALSE; /* Right and left reverse switches for the HC11. */
char r_rev = FALSE;

/* At last! Real main function! */
void main(void) {

 /* Priority stuff first, like stuff that needs to be set in the
 first 64 E-clock cycles. */
 OPTION |= 0x80; /* Fire up A/D converter. */

 /* Initialize your constants here. Primarily for motor control. */
 Kp_right = 1.0/25000.0;
 Kp_left = Kp_right;
 m = 3000.0/255.0; /* For Full speed, 0xFF -> 3000 RPM or thereabouts. */
 l_enc = 0; /* Assume the motors are going zero speed initially... */
 r_enc = 0;
 lencprev = 0; /* Safe to assume motors weren't moving beforehand either. */
 rencprev = 0;

 /* For now, also assume that for straight line going, one wants 60% of full
 * speed capacity. Modify in subroutines and functions for turns and wall
 * following algorithms.
 */
 lspdfact = STRAIGHT;
 rspdfact = STRAIGHT;

 /* Start RTI interrupt. */

59

 RTI_JMP = JMP_OP_CODE;
 RTI_VEC = rti_isr;
 PACTL &= ~0x01; /* Set RTI to go every 8 ms. */
 TMSK2 |= 0x40;
 TFLG2 = 0x40;

 /* Start TOF interrupt. */
 TOF_JMP = JMP_OP_CODE;
 TOF_VEC = tof_isr;
 TMSK2 |= 0x80;
 TFLG2 = 0x80;

 /* Set up timer input captures for line sensors.
 * Set up TIC1 and TIC2 for capture on rising edge.
 * TIC1 : Front line sensor.
 * TIC2 : rear line sensor.
 */
 TIC1_JMP = JMP_OP_CODE;
 TIC1_VEC = tic1_isr;
 TIC2_JMP = JMP_OP_CODE;
 TIC2_VEC = tic2_isr;
 TCTL2 = 0x18;
 TMSK1 |= 0x06;
 TFLG1 = 0x06;

 /* Enable PIA ports A and B.
 * PIA_A and B are (for now) defined as input.
 *
 * I'm thinking right now that we can use these ports as a way to
 * trigger the interrupts for the line sensors.
 */
 PIA_CRA &= ~0x04;
 PIA_DDRA = 0x00;
 PIA_CRA |= 0x04;

 PIA_CRB &= ~0x04;
 PIA_DDRB = 0x00;
 PIA_CRB |= 0x04;

 enable(); /* Enable interrupts and other fun things. */

 /* Actual meat of the program!
 * Need to concern ourselves with the following (probably in order):
 * - Distance calculations to walls.
 * - Motor control calculations.
 * > Adjustment for wall following.
 * > Right or left turns? Where? How fast?
 * > Gunning it through the maze vs. in a room.
 * > Speeding up to catch air via the ramp (optional)
 * - GPS subsystem (optional, scores extra points with Dr. Bruder)
 * - Marshmallow subsystem. (optional)
 */
 while(!fire_out){

 /* I'm going to start by looking at the sensors for wall following.
 * (Why? Because I coded it in that way)

60

 */
 if(check_wall){

 /* Grab the latest data from the sensors. */
 poll_wall();

 /* Calculate the dist. to front wall. */
 front = (lf >> 1) + (rf >> 1);

 /* Since we are right wall following, if we get too close to the wall,
* we need to yell at the motors to do something about it.
* Same if we get too far away to the right wall, for fear of tagging
* the opposite wall.
*/

 if(rr > WALLHUG) { /* Robot's heading into the left wall */
 lspdfact = FASTER;
 rspdfact = SLOWER;
 l_rev = FALSE;
 r_rev = FALSE;

 }
 else if (rf > WALLHUG) { /* Robot's heading into the right wall */

 lspdfact = SLOWER;
 rspdfact = FASTER;
 l_rev = FALSE;
 r_rev = FALSE;

 }
 else { /* Don't bother it. */

 lspdfact = STRAIGHT;
 rspdfact = STRAIGHT;
 r_rev = FALSE;
 l_rev = FALSE;

 }
 /* What happens if we get close to a front wall? Turn! */
 if (front > CLOSEFRONT) {

 /* Dependent on the direction of what's to come. If it's obvious,
 * do the required turn.
 * The comparison is a serving suggestion.
 */
 if((lf << 1) < rf) { /* Hang a left. */
 lspdfact = FULLBORE;
 l_rev = TRUE;
 rspdfact = FULLBORE;
 r_rev = FALSE;
 }
 else if ((rf << 1) < lf) { /* Hang a right. */
 lspdfact = FULLBORE;
 l_rev = FALSE;
 rspdfact = FULLBORE;
 r_rev = TRUE;
 }
 else /* Call an all stop and exit -- this is a test condition. */ {
 lspdfact = STOP;
 rspdfact = STOP;
 exit(0);
 }

 }

61

 /* Tell the HC11 not to do this for a while. */
 check_wall = FALSE;

 }

 /* Fun motor control stuff.
 * This is the calculation part of the program for the motor
control.
 * Things that need to be done:
 * 1. Get and calc. the actual speed from the decoders.
 * 2. Calculate the desired speed for the motors.
 * 3. Send the motor speed to the data.
 */
 if(calc_dc_flag){
 /* Grab the current speed off of the Altera chip. */
 recv_altera();

 /* Calculate actual speed. */
 l_act = m * (float) l_enc;
 r_act = m * (float) r_enc;

 /* Calculate desired speed. */
 r_des = MAXSPD * rspdfact;
 l_des = MAXSPD * lspdfact;

 /* Figure out what 8-bit value needs to be sent to the motor.
 * This needs to be figured out -- ran out of time.
 * Of course, the following two statements below are wrong.

*/
 r_des = r_des + 1;
 l_des = l_des + 1;

 /* Last thing to do is send it the new data. */
 send_altera();
 calc_dc_flag = FALSE;
 }

 /* Sound of white (line) noise. */
 if(in_room) { is_fire = smokey(); }

 /* Do we have FIRE?!?!? */
 if(is_fire) { fire_out = kill_nine(); }
 }
}

/* Fun interrupt declarations and statements. */

/* TIC1 interrupt */
#pragma interrupt_handler tic1_isr
/* TIC1_servicing:
 * 1. Tell the HC11 it's in a room.
 * 2. Exit out.
 */
void tic1_isr(void)
{
 in_room = TRUE;
 /* Clear interrupts */

62

 TFLG1 = 0x04;
}

/* TIC2 interrupt */
#pragma interrupt_handler tic2_isr
/* TIC1_servicing:
 * Pretty much the same right now as tic1_isr, but will be tweaked later.
 * 1. Tell the HC11 it's in a room.
 * 2. Exit out.
 */
void tic2_isr(void)
{
 in_room = TRUE;
 /* Clear interrupts */
 TFLG1 = 0x02;
}
/* TOF interrupt. */
#pragma interrupt_handler tof_isr
/* TOF servicing:
 * 1. Tell the HC11 to look at the wall sensors.
 * 2. Exit out of the interrupt.
 */
void tof_isr(void)
{
 check_wall = TRUE;
 /* Exit nicely out of the interrupt. */
 TMSK2 |=0x80;
}

/* RTI interrupt. */
#pragma interrupt_handler rti_isr
/* Function of RTI interrupt:
 * Yell at the HC11 to do motor control calculations.
 */
void rti_isr(void)
{
 calc_dc_flag = TRUE;
 /* Exit nicely out of the interrupt. */
 TFLG2 = 0x40;
}

/* Yet more function declarations. */

/* poll_wall:
 * This function polls the wall sensors.
 */
void poll_wall(void)
{
/* Set up ADCTL in order to start conversion.
 * Poll pins AD0-3 once and STOP. Thus CC = 0.
 */
 ADCTL = 0x10;

 /* Wait for the nice conversions to stop.
 * Poll CCF continuously to see if it's done.*/
 while(!(ADCTL & 0x80)) ;

63

 /* Send values on their way. Remember right wall following.
 * ADR1 is Right Rear sensor.
 * ADR2 is Right Front sensor.
 * ADR3 is Left Front sensor.
 * ADR4 is currently not in use.
 */
 rr = ADR1;
 rf = ADR2;
 lf = ADR3;
}

/* poll_fire:
 * This function polls the fire sensors. *
 */
void poll_fire(void)
{
 /* Poll upper three A/D pins. These are for fire detection.
 * Scan four at once and STOP, *for now*. CC = 1 for fire sensors. */
 ADCTL = 0x14;
 while (!(ADCTL & 0x80)) ; /* Wait for those A/D to finish. */

 /* Fire sensors are located as follows:
 * ADR1 = monopulse left
 * ADR2 = monopulse right
 * ADR3 = ranger
 * ADR4 is empty.
 */
 mono_left = ADR1;
 mono_rt = ADR2;
 ranger = ADR3;
}

/* send_altera:
 * What's goin down:
 * Fire off the motor controller speeds to the Altera chip.
 * We're going to need the addresses of the Altera chip to do any more with
 * this.
 */
void send_altera(void)
{
 LEFT_MOTOR = l_pwm;
 RT_MOTOR = r_pwm;
}

/* recv_altera:
 * First store the last values off of the encoder.
 * Then grab the latest motor control figures off of Altera.
 */
void recv_altera(void)
{
 lencprev = l_enc;
 rencprev = r_enc;

 l_enc = LEFT_ENCODER;
 r_enc = RT_ENCODER;

64

}

/* smokey:
 * Like Smokey the Bear, only you can prevent fires.
 * Here is the code to detect if a fire is in a room.
 * It returns TRUE or FALSE if it found it.
 */
char smokey(void)
{
 char fire = FALSE; /* Is there a fire? */
 int i = 0; /* Loop crap. */

 /* Call all_stop on the motors. */
 lspdfact = STOP;
 rspdfact = STOP;

 /* Enable some sort of scanning procedure here.
 * This could either be making the bot go 360 or enabling a
 * small motor to rotate the sensors.
 */

 /* DISABLE THE TOF INTERRUPT HERE so it doesn't freak out. */
 TMSK2 &=~0x80;

 /* Find anything? There will be some set fire levels present. */
 if((mono_left > DET_FIRE) || (mono_rt > DET_FIRE) || (ranger > DET_FIRE))
 fire = TRUE;

 /* AT this point, reenable the TOF interrupt */
 if(!fire) TMSK2 |= 0x80;

 /* Return fire status. */
 return(fire);
}

/* kill_nine:
 * Just like UNIX, this code directs the bot to the fire and kills it.
 * Outline:
 * 1a. Direct the robot towards the fire.
 * 1b. Move robot to fire.
 * 2. STOP when the robot gets inside the ring.
 * 3. Extinguish the fire if you really, really find it.
 * Otherwise, go full bore out of the room.
 */
char kill_nine(void)
{
 char is_out = FALSE;

 while(is_fire) {
 /* Direct the robot to the fire. Use Monopulse system. */
 if(mono_left > mono_rt) {
 lspdfact = 0.4;
 rspdfact = STRAIGHT;
 }
 else if(mono_rt > mono_left){

65

 rspdfact = 0.4;
 lspdfact = STRAIGHT;
 }
 else {
 lspdfact = STRAIGHT;
 rspdfact = STRAIGHT;
 }

 /* Is the fire detected? */
 if(ranger > 0xCA){
 while(!is_out){

lspdfact = STOP;
rspdfact = STOP;
is_out = extinguish();

 }
 else {
 is_fire = FALSE;
 }
 }
}
}

char extinguish(void)
{
 char out = FALSE;
 char trigger;

 while (!out){
 trigger = TRUE; /* trigger extinguisher. */
 poll_fire();
 if(ranger < DET_FIRE){
 out = TRUE;
 trigger = FALSE;
 }
 }
 return(out);
}

/* Enter your debugging functions here. */

/* out2bytes: print an integer to the terminal. */
void out2bytes(unsigned int n)
{
 asm(" jsr 0xffc1");
 asm(" jsr 0xffc4");
}

/* out1byte: prints a single byte character to the terminal. */
void out1byte(unsigned char n)
{
 asm(" jsr 0xffbb");
}

Figure 11: HC11 Control Code (Final Revision)

66

Appendix B: Itemized Budget for Group 7

Description Cost Donated? (Y/N)
Starter Kit (Provided by EE Dept.) $0.00 Y
Available Items (Provided by EE Dept.) $0.00 Y
4 - IR Emitters $7.52 N
84 Pin PLCC Socket $1.15 N
EPM7128ALC84-12 $16.00 N
EPM7032LC44-12 $12.60 N
84 Pin Wire Wrap Adapter $9.86 N
2 - GP2D12 Sensors $11.78 N
March Stockroom $0.44 N
April Stockroom $0.20 N
Mounting Hardware $3.68 Y
Masonite, Allthread, and Hardware $16.64 Y
Perforated Board $2.79 Y
Water Pump $5.00 Y
Small Diameter Tubing (4ft) $0.68 Y
Large Diameter Hose (4ft) $0.80 Y
Hose Adapters (2) $1.30 Y
Sprinkler Head $0.89 Y
Auxiliary Batteries (2) $9.36 Y

Total $100.69
Total (Undonated) $59.55

Total Budget Available $100.00
Total Budget Unused $40.45

