Solutions to homework #8 due 2007/4/10

Problem 1

(a) Since the glass plates are thin we will ignore volume absorption. The effective transmission of a glass plate (effective means including the effects of re-reflection inside the material) is

$$T_t = \frac{T^2}{1 - R^2}$$

where

$$R = \left(\frac{n-1}{n+1}\right)^2 \qquad \qquad T = 1 - R$$

The effective transmission through all three glass plates is

$$T_3 = \left(\frac{T^2}{1 - R^2}\right)^3$$

Plugging in n = 1.5 we get

$$R = 0.04$$
  $T = 0.96$   $T_3 = 0.787$ 

(b) At each surface 0.04 of the light is lost, and 0.96 of the light is transmitted directly. Since there are six surfaces, the total direction transmittance is

$$T_6 = T^6 = 0.96^6 = 0.783$$

So the vast majority of the light which makes it through the stack of glass plates is directly transmitted.

## Problem 2

(a) When we ignore multiple reflections, then the transmissivity of a thickness of material is

$$T_t = T^2 K$$

where T is the surface transmissivity, and K is the volume transmissivity. For the 1 cmthickness we can write

$$T_{1\,\rm cm} = T^2 K$$

and for the 1 cm thickness we can write.

$$T_{2\,\rm cm} = T^2 K^2$$

where we write  $K^2$  for the material which is twice as thick. We can now solve for T and K,

$$K = \frac{T_{2 \text{ cm}}}{T_{1 \text{ cm}}} = \frac{0.8}{0.85} = 0.9412$$
$$T = \frac{T_{1,\text{cm}}}{\sqrt{T_{2,\text{cm}}}} = \frac{0.85}{\sqrt{0.8}} = 0.9503$$

where K is for 1, cm thickness material. The total transmission for a 3 cm slab is then

$$T_{1,\rm cm} = T^2 K^3 = 0.9503 \times 0.9412^3 = 0.753$$

(b) For a material thickness x, the absorption coefficient,  $\alpha$ , is related to the bulk transmissivity of the material as

$$K = e^{-\alpha x}$$

or

$$\alpha = -\frac{\log K}{x} = \frac{1}{x}\log\frac{1}{K}$$

For x = 1 cm, K = 0.9412, so we get

$$\alpha = \log \frac{1}{0.9412} = 0.061 \,\mathrm{cm}^{-1}$$

## Problem 3

I am going to fit only one of the equations, the Cauchy expression, and only to the  $\lambda^{-4}$  term,

$$n_{\text{Cauchy}}(\lambda) = a + \frac{b}{\lambda^2} + \frac{d}{\lambda^4}$$

I am going to fit the curve thall of these points. This table lists the wavelengths, the given index of refraction, and the fitted index of refraction.

| Line | $\lambda$ | n       | fit     |
|------|-----------|---------|---------|
| h    | 0.40466   | 1.53024 | 1.53017 |
| g    | 0.43584   | 1.52669 | 1.52687 |
| F    | 0.48613   | 1.52283 | 1.52265 |
| d    | 0.58756   | 1.51680 | 1.51670 |
| С    | 0.65627   | 1.51432 | 1.51432 |
| r    | 0.70652   | 1.51289 | 1.51286 |

The following plot shows the data and the model plotted together inthe top panel, and the fit residuals in the lower panel. The RMS variation from the model is 0.00012.



## Problem 4

This is the product of the two curves. Sorry, but I don't feel like measuring the curves, and I don't have to because I am the teacher.





Figure 7.15 Passage of light ray through a thin film, indicating the terms used in Eq. 7.21.

We need to use equation 7.21,

$$R = \frac{r_1^2 + r_2^2 + 2r_1r_2\cos X}{1 + r_1^2 + r_2^2 + 2r_1r_2\cos X},$$

where

$$r_1 = -\frac{\sin(I_0 - I_1)}{\sin(I_0 + I_1)}$$
 or  $r_1 = \frac{\tan(I_0 - I_1)}{\tan(I_0 + I_1)}$ 

and

$$r_2 = -\frac{\sin(I_1 - I_2)}{\sin(I_1 + I_2)}$$
 or  $r_2 = \frac{\tan(I_1 - I_2)}{\tan(I_1 + I_2)}$ 

and

$$X = \frac{4\pi n_1 t_1 \cos I_1}{\lambda}$$

 $I_0, I_1$ , and  $I_2$  are related by Snell's law,

$$n_0 \sin I_0 = n_1 \sin I_1$$
  $n_1 \sin I_1 = n_2 \sin I_2$ 

The indices are  $n_0 = 1$ ,  $n_1 = 1.38$ , and  $n_2 = 1.52$ . The following plot shows the reflectivity for s-polarized light (solid) and p-polarized light (dotted).

