EE 565: Position, Navigation and Timing Introduction to Navigation

Aly El-Osery Kevin Wedeward

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with
Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity, Prescott, Arizona, USA

January 17, 2023

• The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.

Often described by Position, Velocity, and Attitude (PVA)

 Overview
 Dead Reckoning
 Navigation Concept
 Sensors

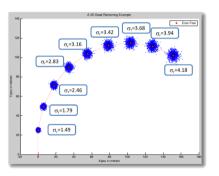
 ●
 0000
 0
 0

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.
 - Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.
 - Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"
 - Position fixing: Directly measuring location
 - Dead Reckoning: measures changes in position and/or attitude

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.
 - Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"
 - Position fixing: Directly measuring location
 - Dead Reckoning: measures changes in position and/or attitude
 - ullet need to initialized and then "integrate" the Δ 's
 - ullet Inertial sensors measure the Δ 's without requiring an external reference

Dead Reckoning: An Example 1



- At each epoch we measure Δx and Δy with noise ($\sigma = 1m$)
- Then add to the prior location

Dead Reckoning: An Example 1

NEW MEXICO TECH

- At each epoch we measure Δx and Δy with noise ($\sigma = 1m$)
- Then add to the prior location

Ianuaru 17, 2023

Dead Reckoning: UGV Examples

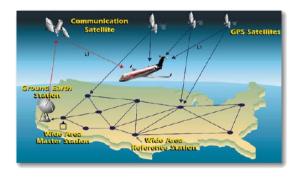
PVA needed in terms of local datum

DARPA grand challenge

Dead Reckoning: UGV Examples

PVA needed in terms of local datum

DARPA grand challenge


SOCOM Robot (EE NMT project)

Dead Reckoning: Aircraft or UAV Examples

Earth Centered Earth Fixed Coordinate System

Ianuaru 17, 2023

Dead Reckoning: Spacecraft Examples

Earth Centered Inertial Coordinate System

Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - \bullet Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, \dots

Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, ...
- 4 How should I describe my location?
 - Position, velocity, and attitude?
 - attitude can be a bit tricky!!

Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, ...
- 4 How should I describe my location?
 - Position, velocity, and attitude?
 - attitude can be a bit tricky!!
- When answering the question "where am I?" the wrt must be very clearly defined!!
 - Lead in to the notion of coordinate systems

Navigation Sensors: Past, Current, and Future

Overview

Dead Reckoning

Navigation Conce

Sensors