EE 565: Position, Navigation and Timing Navigation Mathematics: Rotation Matrices, Part II

Kevin Wedeward Aly El-Osery

Electrical Engineering Department New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity, Prescott, Arizona, USA

Spring 2023

Kevin We	edeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timir	ig	Spring 20	023 1 / 25

- Parameterizations of Rotations
- Fixed versus Relative Rotations
- Opposition of Relative-axis Rotations
- 5 Composition of Fixed-axis Rotations
- 6 Example

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	00	000
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timin	3	Spring 20	023 2/25

Review	Orientation	Fixed vs Relative	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
●0	00	00000	0000	00000	00	000
Ke	vin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 202	23 3/25

Rotation matrix, C_2^1

• describes orientation of

Review 0●						
Kevi	in Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	3	Spring	2023 4 / 25

Rotation matrix, C_2^1

• describes orientation of frame 2 with respect to frame 1

Revie 0●	ew Orientation	Fixed vs Relativ 00000	e Relative-axis Rotations	Fixed-axis Rotations	Example 00	Summary 000
	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 20	23 4 / 25

- describes orientation of frame 2 with respect to frame 1
- is of size

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
0	00	00000	0000		00	000
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	1	Spring 2	2023 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

Revie	ew Orientation	Fixed vs Relativ	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
0●	00	00000	0000		00	000
	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	3 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3
- is constructed via

Review	o	Fixed vs Relativ	ve Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
0●	Orientation	00000	0000	00000	00	000
k	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	3 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

Revie 0●	ew Orientation 00	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations 00000	Example 00	Summary 000
	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 202	3 4 / 25

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $[C_2^1]^{-1} =$

Revie 0●	w Orientation 00	Fixed vs Relat 00000		Fixed-axis Rotations	Example 00	Summary 000
	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 202	3 4 / 25

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $[C_2^1]^{-1} = [C_2^1]^T =$

Revie	ew Orientation	Fixed vs Relati	ve Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
⊙●	00	00000	0000		00	000
	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 202	3 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$

Review	Orientation	Fixed vs Relativ	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
0●	00	00000	0000	00000	00	000
K	evin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing]	Spring 2	023 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$
• is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix}$

Review 0●	Orientation	Fixed vs Relative 00000	Relative-axis Rotations	Fixed-axis Rotations	Example 00	Summary 000
k	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 20	23 4 / 25

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via
$$\begin{bmatrix} x_2^1, y_2^1, z_2^1 \end{bmatrix} = \begin{bmatrix} x_2 \cdot x_1, y_2 \cdot x_1, z_2 \cdot x_1 \\ x_2 \cdot y_1, y_2 \cdot y_1, z_2 \cdot y_1 \\ x_2 \cdot z_1, y_2 \cdot z_1, z_2 \cdot z_1 \end{bmatrix}$$

• has inverse $\begin{bmatrix} C_2^1 \end{bmatrix}^{-1} = \begin{bmatrix} C_2^1 \end{bmatrix}^T = C_1^2$
• is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, & y_2 \cdot x_1, & z_2 \cdot x_1 \\ x_2 \cdot y_1, & y_2 \cdot y_1, & z_2 \cdot y_1 \\ x_2 \cdot z_1, & y_2 \cdot z_1, & z_2 \cdot z_1 \end{bmatrix}$ • has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ ; similarly, $R_{\mathbf{x},\theta} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos(\theta) & -\sin(\theta) \\ \mathbf{0} & \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad R_{\mathbf{y},\theta} = \begin{bmatrix} \cos(\theta) & \mathbf{0} & \sin(\theta) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin(\theta) & \mathbf{0} & \cos(\theta) \end{bmatrix}$

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3
- is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, & y_2 \cdot x_1, & z_2 \cdot x_1 \\ x_2 \cdot y_1, & y_2 \cdot y_1, & z_2 \cdot y_1 \\ x_2 \cdot z_1, & y_2 \cdot z_1, & z_2 \cdot z_1 \end{bmatrix}$ • has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ ; similarly, $R_{\mathbf{x},\theta} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos(\theta) & -\sin(\theta) \\ \mathbf{0} & \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad R_{\mathbf{y},\theta} = \begin{bmatrix} \cos(\theta) & \mathbf{0} & \sin(\theta) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin(\theta) & \mathbf{0} & \cos(\theta) \end{bmatrix}$
- recoordinatizes vector \vec{v}^2 in frame 1 via $\vec{v}^1 =$

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
0●	00	00000		00000	00	000
K	evin Wedeward, Aly El-Oser	J (NMT)	EE 565: Position, Navigation and Timir	ng	Spring 2	2023 4 / 25

Rotation matrix, C_2^1

- describes orientation of frame 2 with respect to frame 1
- \bullet is of size 3×3

• is constructed via $[x_2^1, y_2^1, z_2^1] = \begin{bmatrix} x_2 \cdot x_1, & y_2 \cdot x_1, & z_2 \cdot x_1 \\ x_2 \cdot y_1, & y_2 \cdot y_1, & z_2 \cdot y_1 \\ x_2 \cdot z_1, & y_2 \cdot z_1, & z_2 \cdot z_1 \end{bmatrix}$ • has inverse $[C_2^1]^{-1} = [C_2^1]^T = C_1^2$ • is of the form $\begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0\\ \sin(\theta) & \cos(\theta) & 0\\ 0 & 0 & 1 \end{bmatrix} = R_{z,\theta}$ for the basic (elementary) rotation about the *z*-axis by angle θ ; similarly, $R_{\mathbf{x},\theta} = \begin{bmatrix} \mathbf{1} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \cos(\theta) & -\sin(\theta) \\ \mathbf{0} & \sin(\theta) & \cos(\theta) \end{bmatrix}, \quad R_{\mathbf{y},\theta} = \begin{bmatrix} \cos(\theta) & \mathbf{0} & \sin(\theta) \\ \mathbf{0} & \mathbf{1} & \mathbf{0} \\ -\sin(\theta) & \mathbf{0} & \cos(\theta) \end{bmatrix}$

• recoordinatizes vector \vec{v}^2 in frame 1 via $\vec{v}^1 = C_2^1 \vec{v}^2$

Review						
00						
Kevin V	Wedeward, Aly El-Oser	ry (NMT)	EE 565: Position, Navigation and Timi	ng	Spring 2	2023 4 / 25

Orientation

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	●0	00000	0000	00000	00	000
Kevin V	/edeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2	2023 5/25

() Rotation matrices use $3 \times 3 = 9$ parameters

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	○●	00000	0000	00000	00	000
Kevin V	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 20	6 / 25

- **(**) Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00		00000	0000	00000	00	000
Kevin V	Nedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 20	23 6 / 25

- **(**) Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	○●	00000	0000	00000	00	000
Kevin V	Nedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timin	g	Spring 202	3 6 / 25

- **(**) Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 - \Rightarrow 3 free variables exist \Rightarrow need only 3 parameters to describe orientation

- **(**) Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 - \Rightarrow 3 free variables exist \Rightarrow need only 3 parameters to describe orientation
- ② Examples of 3-parameter descriptions:
 - fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
 - relative-axis (Euler) rotations (e.g., ZYZ, ZYX, ...)
 - angle and axis

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	○●	00000	0000	00000	00	000
Kevin W	/edeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing]	Spring 202	23 6 / 25

- **(**) Rotation matrices use $3 \times 3 = 9$ parameters
 - these 9 parameters are not independent
 - 3 constraints due to columns being orthogonal
 - 3 constraints due to columns being unit vectors
 - \Rightarrow 3 free variables exist \Rightarrow need only 3 parameters to describe orientation
- ② Examples of 3-parameter descriptions:
 - fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
 - relative-axis (Euler) rotations (e.g., ZYZ, ZYX, ...)
 - angle and axis
- Quaternions use 4 parameters

	Orientation o●					
Kevin '	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timin	9	Spring 20	023 6 / 25

Fixed vs Relative

Review 00	Orientation	Fixed vs Relat •0000	tive Relative-axis Rotations	Fixed-axis Rotations 00000	Example 00	Summary 000
K	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 20	23 7 / 25

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

• Fixed-axis rotation – rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000		00000	00	000
Kevin V	Vedeward, Aly El-Osei	ry (NMT)	EE 565: Position, Navigation and Tim	ning	Spring 20	23 8 / 25

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

- Fixed-axis rotation rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame
- **2** Relative-axis rotation rotation performed about x-, y-, or z-axis of current (and relative) coordinate frame
 - sometimes referred to as Euler rotations

		Fixed vs Relativ 0●000	e Relative-axis Rotations			
Kevir	n Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	J	Spring 2	.023 8 / 25

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.

- Fixed-axis rotation rotation performed about x-, y-, or z-axis of initial (and fixed) coordinate frame
- **2** Relative-axis rotation rotation performed about x-, y-, or z-axis of current (and relative) coordinate frame
 - sometimes referred to as Euler rotations

Resulting orientation is quite different!

		Fixed vs Relativ 0●000	e Relative-axis Rotations 0000			
Kevi	in Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	j li	Spring 2	023 8 / 25

C versus R

- C_b^a is a rotation matrix used to describe orientation/attitude of coordinate frame b relative to coordinate frame a
- *R* is a rotation matrix used to describe a specific rotation or operation, e.g., $R_{\vec{r},\beta}$ notes rotation about the unit vector \vec{r} by angle β

Example sequence of three consecutive rotations to compare fixed versus relative.

- Step 1: Rotate about the *z*-axis by ψ
- **Step 2**: Rotate about the *y*-axis by θ
- **Step 3:** Rotate about the *x*-axis by ϕ

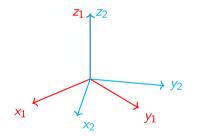
Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	000●0	0000		00	000
Kevir	n Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timi	ng	Spring 2023	10 / 25

Relative-axis Rotation

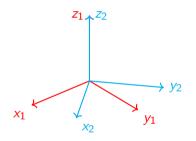
Fixed-axis Rotation

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	0000●	0000	00000	00	000
Kevin V	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	g	Spring 2023	11 / 25

Relative-axis Rotation Rotate about z_1



Fixed-axis Rotation Rotate about *z*₁

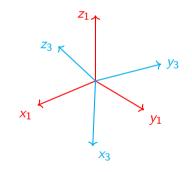


Review	Orientation	Fixed vs Relativ	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	0000●		00000	00	000
K	evin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	J	Spring 2023	11 / 25

Relative-axis Rotation Rotate about *y*₂

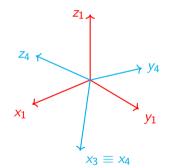
 $x_1 \xrightarrow{z_1} y_2 \equiv y_3$

Fixed-axis Rotation Rotate about *y*₁

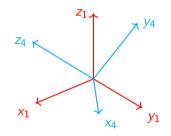


		Fixed vs Relative				
Kevii	n Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	g	Spring 2023	11 / 25

Relative-axis Rotation Rotate about x_3



Fixed-axis Rotation Rotate about x₁



Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	0000●	0000	00000	00	000
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Tim	ing	Spring 2023	11 / 25

Relative-axis Rotations

			Relative-axis Rotations ●000		
Kevin '	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	Spring 2023	12 / 25

Construct rotation matrix that represents composition of relative-axis rotations using Z-Y-X sequence of three rotations from previous example.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors.
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.

			Relative-axis Rotations			
			0000			
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timi	ng	Spring 2023	13 / 25

Construct rotation matrix that represents composition of relative-axis rotations using Z-Y-X sequence of three rotations from previous example.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors.
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.
 - \Rightarrow (in matrix form) $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = [x_4^2, y_4^2, z_4^2] = C_4^2$

			Relative-axis Rotations		
Ke	vin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	Spring 2023	13 / 25

Construct rotation matrix that represents composition of relative-axis rotations using Z-Y-X sequence of three rotations from previous example.

- Start with last rotation $C_4^3 = [x_4^3, y_4^3, z_4^3] = R_{x,\phi}$, and recall columns are vectors.
- To re-coordinatize vectors x_4^3, y_4^3, z_4^3 in frame 2, multiply each by $C_3^2 = R_{y,\theta}$.
 - \Rightarrow (in matrix form) $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = [x_4^2, y_4^2, z_4^2] = C_4^2$

where it is noted that $[C_3^2 x_4^3, C_3^2 y_4^3, C_3^2 z_4^3] = C_3^2 [x_4^3, y_4^3, z_4^3] = C_3^2 C_4^3 = C_4^2$

	Relative-axis Rotations		
Vedeward, Aly El-Osery	EE 565: Position, Navigation and Timin	Spring 2023	

Composition of Relative-axis Rotations

- To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1 = R_{z,\psi}$.
 - $\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$

			Relative-axis Rotations			
Kevin	Wedeward, Aly El-Osei	ry (NMT)	EE 565: Position, Navigation and Tim	ning	Spring 2023	14 / 25

Composition of Relative-axis Rotations

• To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1 = R_{z,\psi}$.

 $\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$

• Combined sequence of relative-rotations yields

$$C_4^1 = C_2^1 C_3^2 C_4^3 = \underbrace{R_{z,\psi}}_{1st} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{x,\phi}}_{3rd}$$

			Relative-axis Rotations 00●0			
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timir	ig in the second se	Spring 2023	14 / 25

Composition of Relative-axis Rotations

• To re-coordinatize vectors x_4^2, y_4^2, z_4^2 in frame 1, multiply each by $C_2^1 = R_{z,\psi}$.

 $\Rightarrow [C_2^1 x_4^2, C_2^1 y_4^2, C_2^1 z_4^2] = C_2^1 [x_4^2, y_4^2, z_4^2] = C_2^1 C_4^2 = C_2^1 C_3^2 C_4^3 = C_4^1$

• Combined sequence of relative-rotations yields

$$C_4^1 = C_2^1 C_3^2 C_4^3 = \underbrace{R_{z,\psi}}_{1st} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{x,\phi}}_{3rd}$$

- Note order is left to right!
- Additional relative-rotations represented by right (post) matrix multiplies.

			0000			
Kevin V	Vedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing]	Spring 2023	14 / 25

For the relative–axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{split} C_4^1 &= C_2^1 C_3^2 C_4^3 \\ &= R_{z,\psi} R_{y,\theta} R_{x,\phi} \\ &= \begin{bmatrix} \cos \psi & -\sin \psi & 0\\ \sin \psi & \cos \psi & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta\\ 0 & 1 & 0\\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & \cos \phi & -\sin \phi\\ 0 & \sin \phi & \cos \phi \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & c_\psi s_\theta s_\phi - c_\phi s_\psi & c_\phi c_\psi s_\theta + s_\phi s_\psi\\ c_\theta s_\psi & c_\phi c_\psi + s_\theta s_\phi s_\psi & c_\phi s_\theta s_\psi - c_\psi s_\phi\\ -s_\theta & c_\theta s_\phi & c_\theta c_\phi \end{bmatrix} \end{split}$$

where the notation $c_{\beta} = \cos(\beta)$ and $s_{\beta} = \sin(\beta)$ are introduced.

			Relative-axis Rotations			
			0000			
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timin	g	Spring 2023	15 / 25

Fixed-axis Rotations

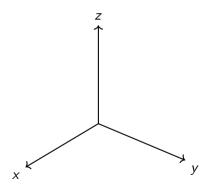
				Fixed-axis Rotations ●0000		
Kevin '	Wedeward, Aly El-Oser	J (NMT)	EE 565: Position, Navigation and Timing	1	Spring 2023	16 / 25

- Development of equivalent rotation matrix for sequence of fixed-axis rotations will make use of rotation matrix's ability to rotate a vector.
- A vector \vec{p} can be rotated into a new vector via $R\vec{p}$, both in the same coordinate frame.
- The sequence $Z(\psi) Y(\theta) X(\phi)$ aka Yaw-Pitch-Roll will be considered again, but this time about fixed-axes.

				Fixed-axis Rotations 0●000		
Kevir	n Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	17 / 25

Quick aside - example of rotating a vector in same coordinate system.

• Sketch $\vec{p} = [1, -1, 1]^T$ before and after its rotation about z by 90° (use $R_{z,90°}$ for calculation of rotated value).



				Fixed-axis Rotations		
K	evin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	18 / 25

• First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = [R_{z,\psi}\vec{x}_1^1, R_{z,\psi}\vec{y}_1^1, R_{z,\psi}\vec{z}_1^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}I = R_{z,\psi}$.

				Fixed-axis Rotations 000●0		
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	19 / 25

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = [R_{z,\psi}\vec{x}_1^1, R_{z,\psi}\vec{y}_1^1, R_{z,\psi}\vec{z}_1^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}I = R_{z,\psi}$.
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = [R_{y,\theta}\vec{x}_2^1, R_{y,\theta}\vec{y}_2^1, R_{y,\theta}\vec{z}_2^1] = R_{y,\theta}[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{y,\theta}R_{z,\psi}.$

				Fixed-axis Rotations 000●0		
ŀ	Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Tim	ing	Spring 2023	19 / 25

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = [R_{z,\psi}\vec{x}_1^1, R_{z,\psi}\vec{y}_1^1, R_{z,\psi}\vec{z}_1^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}I = R_{z,\psi}$.
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = [R_{y,\theta}\vec{x}_2^1, R_{y,\theta}\vec{y}_2^1, R_{y,\theta}\vec{z}_2^1] = R_{y,\theta}[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{y,\theta}R_{z,\psi}.$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vectors $[\vec{x}_4^1, \vec{y}_4^1, \vec{z}_4^1] = [R_{x,\phi}\vec{x}_3^1, R_{x,\phi}\vec{y}_3^1, R_{x,\phi}\vec{z}_3^1] = R_{x,\phi}[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$.

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary

 00
 00
 0000
 0000
 00000
 00000
 00000
 00000

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 565: Position, Navigation and Timing
 Spring 2023
 19 / 25

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = [R_{z,\psi}\vec{x}_1^1, R_{z,\psi}\vec{y}_1^1, R_{z,\psi}\vec{z}_1^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}I = R_{z,\psi}$.
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = [R_{y,\theta}\vec{x}_2^1, R_{y,\theta}\vec{y}_2^1, R_{y,\theta}\vec{z}_2^1] = R_{y,\theta}[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{y,\theta}R_{z,\psi}.$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vectors $[\vec{x}_4^1, \vec{y}_4^1, \vec{z}_4^1] = [R_{x,\phi}\vec{x}_3^1, R_{x,\phi}\vec{y}_3^1, R_{x,\phi}\vec{z}_3^1] = R_{x,\phi}[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$ $\Rightarrow C_4^1 = [\vec{x}_4^1, \vec{y}_4^1, \vec{z}_4^1] = \underbrace{R_{x,\phi}}_{3rd} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{z,\psi}}_{1st}$

- First *z*-axis rotation rotates frame {1}'s basis vectors to become frame {2}'s basis vectors $[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = [R_{z,\psi}\vec{x}_1^1, R_{z,\psi}\vec{y}_1^1, R_{z,\psi}\vec{z}_1^1] = R_{z,\psi}[\vec{x}_1^1, \vec{y}_1^1, \vec{z}_1^1] = R_{z,\psi}I = R_{z,\psi}$.
- Second *y*-axis rotation rotates frame {2}'s basis vectors to become frame {3}'s basis vectors $[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = [R_{y,\theta}\vec{x}_2^1, R_{y,\theta}\vec{y}_2^1, R_{y,\theta}\vec{z}_2^1] = R_{y,\theta}[\vec{x}_2^1, \vec{y}_2^1, \vec{z}_2^1] = R_{y,\theta}R_{z,\psi}.$
- Third *x*-axis rotation rotates frame {3}'s basis vectors to become frame {4}'s basis vectors $[\vec{x}_4^1, \vec{y}_4^1, \vec{z}_4^1] = [R_{x,\phi}\vec{x}_3^1, R_{x,\phi}\vec{y}_3^1, R_{x,\phi}\vec{z}_3^1] = R_{x,\phi}[\vec{x}_3^1, \vec{y}_3^1, \vec{z}_3^1] = R_{x,\phi}R_{y,\theta}R_{z,\psi}$ $\Rightarrow C_4^1 = [\vec{x}_4^1, \vec{y}_4^1, \vec{z}_4^1] = \underbrace{R_{x,\phi}}_{3rd} \underbrace{R_{y,\theta}}_{2nd} \underbrace{R_{z,\psi}}_{1st}$
- Note order is right to left!
- Additional fixed-rotations represented by left (pre) matrix multiplies.

(

For the fixed-axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{split} C_4^1 &= R_{\mathbf{x},\phi} R_{\mathbf{y},\theta} R_{\mathbf{z},\psi} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos\phi & -\sin\phi \\ 0 & \sin\phi & \cos\phi \end{bmatrix} \begin{bmatrix} \cos\theta & 0 & \sin\theta \\ 0 & 1 & 0 \\ -\sin\theta & 0 & \cos\theta \end{bmatrix} \begin{bmatrix} \cos\psi & -\sin\psi & 0 \\ \sin\psi & \cos\psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & -c_\theta s_\psi & s_\theta \\ c_\psi s_\theta s_\phi + c_\phi s_\psi & c_\phi c_\psi - s_\theta s_\phi s_\psi & -c_\theta s_\phi \\ s_\phi s_\psi - c_\phi c_\psi s_\theta & c_\psi s_\phi + c_\phi s_\theta s_\psi & c_\theta c_\phi \end{bmatrix} \end{split}$$

 Review
 Orientation
 Fixed vs
 Relative
 Relative-axis
 Rotations
 Fixed-axis
 Rotations
 Example
 Summary

 00
 00
 0000
 0000
 0000
 0000
 0000
 0000
 0000

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 565: Position, Navigation and Timing
 Spring 2023
 20 / 25

For the fixed-axis rotations $Z(\psi)$, $Y(\theta)$, $X(\phi)$

$$\begin{split} C_4^1 &= R_{x,\phi} R_{y,\theta} R_{z,\psi} \\ &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \phi & -\sin \phi \\ 0 & \sin \phi & \cos \phi \end{bmatrix} \begin{bmatrix} \cos \theta & 0 & \sin \theta \\ 0 & 1 & 0 \\ -\sin \theta & 0 & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \psi & -\sin \psi & 0 \\ \sin \psi & \cos \psi & 0 \\ 0 & 0 & 1 \end{bmatrix} \\ &= \begin{bmatrix} c_\theta c_\psi & -c_\theta s_\psi & s_\theta \\ c_\psi s_\theta s_\phi + c_\phi s_\psi & c_\phi c_\psi - s_\theta s_\phi s_\psi & -c_\theta s_\phi \\ s_\phi s_\psi - c_\phi c_\psi s_\theta & c_\psi s_\phi + c_\phi s_\theta s_\psi & c_\theta c_\phi \end{bmatrix} \end{split}$$

which is quite different than the result for the same sequence of relative-axis rotations.

Review	Orientation	Fixed vs Relative	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	●0	000
Kevin	Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	21 / 25

			Example ⊙●	
Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	Spring 2023	22 / 25

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.

• Rotate about fixed x-axis by ϕ .

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	⊙●	000
Kevir	n Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	22 / 25

- **•** Rotate about fixed x-axis by ϕ .
- **2** Rotate about fixed z-axis by θ .

				Example ⊙●	
Key	vin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	Spring 2023	22 / 25

- **•** Rotate about fixed x-axis by ϕ .
- **2** Rotate about fixed z-axis by θ .
- **③** Rotate about current x-axis by ψ .

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	0●	000
Kevin '	Wedeward, Aly El-Oser	y (NMT)	EE 565: Position, Navigation and Timin	3	Spring 2023	22 / 25

- Rotate about fixed x-axis by ϕ .
- **2** Rotate about fixed z-axis by θ .
- **③** Rotate about current x-axis by ψ .
- **(9)** Rotate about current z-axis by α .

Review	Orientation	Fixed vs Relative	e Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	0●	000
Kev	vin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing		Spring 2023	22 / 25

- Rotate about fixed x-axis by ϕ .
- **2** Rotate about fixed z-axis by θ .
- **③** Rotate about current x-axis by ψ .
- **(**) Rotate about current z-axis by α .
- **(a)** Rotate about fixed y-axis by β .

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	0●	000
Kevin	wedeward, Aly El-Oser	y (NMT)	EE 565: Position, Navigation and Timir	ng	Spring 2023	22 / 25

- **•** Rotate about fixed x-axis by ϕ .
- **2** Rotate about fixed z-axis by θ .
- **③** Rotate about current x-axis by ψ .
- **(**) Rotate about current z-axis by α .
- **(**) Rotate about fixed y-axis by β .
- Rotate about current y-axis by γ .

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example	Summary
00	00	00000	0000	00000	00	000
Kevin	Wedeward, Aly El-Oser	ry (NMT)	EE 565: Position, Navigation and Timi	ng	Spring 2023	22 / 25

Summary

					Summary ●00
Kevin	Wedeward, Aly El-Osery	j (NMT)	EE 565: Position, Navigation and Timing	Spring 2023	23 / 25

Fixed vs Relative Rotations

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

 $C_{resultant} = R_{fixed} C_{original}$

Fixed vs Relative Rotations

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

 $C_{resultant} = R_{fixed} C_{original}$

- Relative-axis (Euler) Rotations
 - Multiply on the **RIGHT**
 - $C_{final} = R_1 R_2 \dots R_n$

Relative-axis Rotation

 $C_{resultant} = C_{original} R_{relative}$

Fixed vs Relative Rotations

- Fixed-axis Rotations
 - Multiply on the LEFT
 - $C_{final} = R_n \dots R_2 R_1$

Fixed-axis Rotation

 $C_{resultant} = R_{fixed} C_{original}$

- Relative-axis (Euler) Rotations
 - Multiply on the **RIGHT**
 - $C_{final} = R_1 R_2 \dots R_n$

Relative-axis Rotation

 $C_{resultant} = C_{original} R_{relative}$

Two types of rotations can be composed noting order of multiplication

 Review
 Orientation
 Fixed vs Relative
 Relative-axis Rotations
 Fixed-axis Rotations
 Example
 Summary oci

 00
 00
 0000
 0000
 0000
 0000
 00
 00
 00

 Kevin Wedeward, Aly El-Osery
 (NMT)
 EE 565: Position, Navigation and Timing
 Spring 2023
 25 / 25