Lecture

Navigation Mathematics: Translation

EE 565: Position, Navigation and Timing

Lecture Notes Update on Spring 2023

Kevin Wedeward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with

Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University

Lecture Topics

Contents

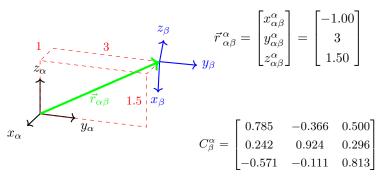
- 1 Vector Notation for Translation 1
- 2 Translation Between More Than Two Coordinate Frames 2
- 3 Example 3

1 Vector Notation for Translation

Translation Between Frames

Define the vector $\vec{r}_{\alpha\beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

• specifies translation between frames



Now have means (and notation) to describe rotation and translation between coordinate frames.

Translation Between Frames

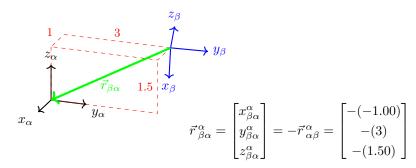
• Resolve, i.e., coordinatize, $\vec{r}_{\alpha\beta}$ wrt frame $\{\beta\}$.

Same vector, so same "direction" and length.

Translation Between Frames

Reverse vector \vec{r} , i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

• notation: $\vec{r}_{\beta\alpha} = -\vec{r}_{\alpha\beta}$



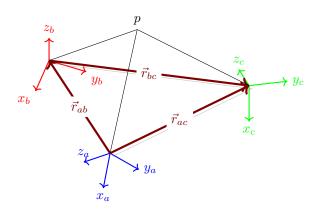
2 Translation Between More Than Two Coordinate Frames

Translation (more than two coordinate frames)

Consider three coordinate systems $\{a\}$, $\{b\}$, $\{c\}$ that have translation and rotation relative to each other.

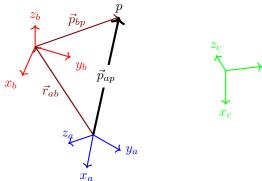
• Knowing relationships between frames $\{a\}$, $\{b\}$, and $\{c\}$, i.e., \vec{r}_{ab} , \vec{r}_{bc} , \vec{r}_{ac} , C^a_b , C^b_c , and C^a_c , location of point p can be described in any frame, i.e., \vec{p}^a or \vec{p}^b or \vec{p}^c .

.5



Translation (more than two coordinate frames)

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.



- $$\begin{split} \bullet \ \, \vec{p}_{ap} &= \vec{r}_{ab} \! + \! \vec{p}_{bp} \text{ In what frame?} \\ \bullet \ \, \vec{p}_{ap}^{\ a} &= \ \, \vec{r}_{ab}^{\ a} + \ \, \vec{p}_{bp}^{\ a} \quad \text{or} \\ \vec{p}_{ap}^{\ b} &= \ \, \vec{r}_{ab}^{\ b} + \ \, \vec{p}_{bp}^{\ b} \quad \text{or} \\ \vec{p}_{ap}^{\ c} &= \ \, \vec{r}_{ab}^{\ c} + \ \, \vec{p}_{bp}^{\ b} \quad \text{or} \\ \vec{p}_{ap}^{\ c} &= \ \, \vec{r}_{ab}^{\ c} + \ \, \vec{p}_{bp}^{\ c} \end{split}$$

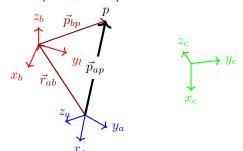
.7

.10

Shorthand notation: $\vec{p}^{\,a} \equiv \vec{p}^{\,a}_{\,ap}$

Translation (more than two coordinate frames)

Given $\vec{p}_{ap}^{\ a} = \vec{r}_{ab}^{\ a} + \vec{p}_{bp}^{\ a}$ and/or the diagram, how would one find $\vec{p}_{bp}^{\ b}$?



use given relationship or vector

$$\Rightarrow \vec{p}_{bn}^{a} = \vec{p}_{an}^{a} - \vec{r}_{ab}^{a}$$

addition $\Rightarrow \vec{p}_{bp}^{\,a} = \vec{p}_{ap}^{\,a} - \vec{r}_{ab}^{\,a}$ • now need to reference to $\{b\}$ $C_a^b \vec{p}_{bp}^{\,a} = C_a^b \left(\vec{p}_{ap}^{\,a} - \vec{r}_{ab}^{\,a} \right)$ $\Rightarrow \vec{p}_{bp}^{\,b} = \vec{p}_{ap}^{\,b} - \vec{r}_{ab}^{\,b}$

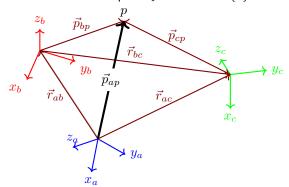
Translation (more than two coordinate frames)

It is important to remember difference between recoordinatizing a vector and finding a location wrt a different frame.

- Recoordinatizing: $\vec{p}^{\,c}_{\,ap} = C^c_a \vec{p}^{\,a}_{\,ap}$ (only frame of reference changes)
 Location wrt different frame: $\vec{p}^{\,c}_{\,cp} = \vec{r}^{\,c}_{\,cb} + C^c_b \vec{r}^{\,b}_{\,ba} + C^c_a \vec{p}^{\,a}_{\,ap}$ (vector addition in same frame) $\neq C_a^c \vec{p}_{ap}^a$

Translation (more than two coordinate frames)

Determine location of point p from frame $\{c\}$; \Rightarrow looking for \vec{p}_{cp}



Many approaches given labeled vectors/translations.

 \vec{p}_{cp}

$$= -\vec{r}_{bc} + \vec{p}_{bp}$$

$$= -\vec{r}_{ac} + \vec{r}_{ab} + \vec{p}_{bp}$$

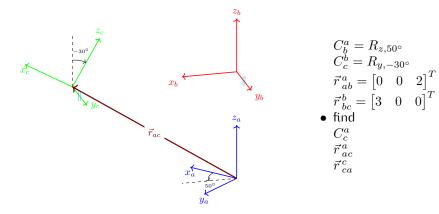
$$= -\vec{r}_{ac} + \vec{p}_{ap}$$

- In what frame? doesn't matter, so long as same
- Can always recoordinatize given C^a_b, C^b_c, C^c_a

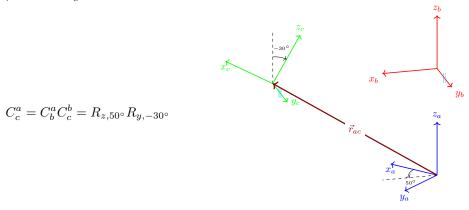
Example 3

Example - Given

Consider the three coordinate frames $\{a\}, \{b\}, \{c\}$ shown with the rotations and translations between some frames given.



Example - Find ${\cal C}^a_c$



Example - Find $\vec{r}^{\,a}_{\,ac}$

$$\vec{r}_{ac}^{a} = \vec{r}_{ab}^{a} + \vec{r}_{bc}^{a}$$

$$= \vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + R_{z,50^{\circ}} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} \cos 50^{\circ} & -\sin 50^{\circ} & 0 \\ \sin 50^{\circ} & \cos 50^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1.93 \\ 2.30 \\ 2.00 \end{bmatrix}$$

Example - Find $\vec{r}^{\,c}_{\,ca}$

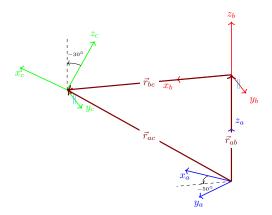
$$\vec{r}_{ca}^{c} = -\vec{r}_{ac}^{c}$$

$$= -C_{a}^{c} \vec{r}_{ac}^{a}$$

$$= -\left[C_{c}^{a}\right]^{T} \vec{r}_{ac}^{a}$$

$$= -\left[R_{z,50^{\circ}} R_{y,-30^{\circ}}\right]^{T} \begin{bmatrix} 1.93 \\ 2.30 \\ 2.00 \end{bmatrix}$$

$$= \begin{bmatrix} -3.59 \\ 0 \\ -0.232 \end{bmatrix}$$



The End _______