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Inertial Sensors — Sensor Models NEW MEXICO TECH

@ Accelerometer model

e Gyro Model

fh=Ff5+Afh=hb+(T+M)fh+w, (1)
5 =G AGY = by + (T + Mp)3 5 + G f b+ w 2)
W ip W ip W ip g g Wip g’ ib Wg

@ Typically, each measures along a signle sense axis requiring three of each to
measure the 3-tupple vector

@ Bias errors are composite of fixed bias, bias instability, and bias stability

Inertial Sensors Errors

b = brg + bp + bgs
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Gyro Constant Bias (°/h) NEW MEXICO TECH

A constant in the output of a gyro in the absence of rotation, in °/h.
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Gyro Constant Bias (°/h) NEW MEXICO TECH

A constant in the output of a gyro in the absence of rotation, in °/h.

Linearly growing error in the angle domain of ¢t.
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Gyro Constant Bias (°/h) NEW MEXICO TECH

A constant in the output of a gyro in the absence of rotation, in °/h.

Linearly growing error in the angle domain of ¢t.

Random constant.
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Gyro Integrated White Noise

NEW MEXICO TECH
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Assuming the rectangular rule is used for integration, a sampling period of T and a time
span of nTs.

/ e(r)dr = Ts Z e(t;) (3)
0 i=1

since E[e(t;)] = 0 and Cov(e(ti),€(t;)) = 0 for all i # j, Var[e(t;)] = o2
E [ /0 e(T)dT] — TunE[e(£)] = 0, Vi

t
Var {/ e(T)dT] = T2nVarle(t;)] = Tsto?, Vi
0
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Gyro Integrated White Noise
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Angle Random Walk (O/ﬂ) NEW MEXICO TECH

Integrated noise resulted in zero-mean random walk with standard deviation that grows

g = o/ Tet (6)
ARW =ap(1)  (°/Vh) (7)

with time as

We define ARW as

In terms of PSD

ARW( V) = =\ [PSD((2/ )2 He) ®)
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Angle Random Walk (°/+v/h) NEW MEXICO TECH

Integrated noise resulted in zero-mean random walk with standard deviation that grows

g = o/ Tet (6)
ARW =ap(1)  (°/Vh) (7)

with time as

We define ARW as

In terms of PSD

ARW( V) = =\ [PSD((2/ )2 He) ®)

ARW times root of the time in hours.
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Angle Random Walk (°/+v/h) NEW MEXICO TECH

Integrated noise resulted in zero-mean random walk with standard deviation that grows

g = o/ Tet (6)
ARW =ap(1)  (°/Vh) (7)

with time as

We define ARW as

In terms of PSD

ARW( V) = =\ [PSD((2/ )2 He) ®)

ARW times root of the time in hours.

White notse.
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0000
1 (NMT) b on and Timing March 29, 2023 6 /15




Gyro Bias Instability (°/h) NEW MEXICO TECH

@ Due to flicker noise with spectrum 1/F.
@ Results in random variation in the bias.
e Normally more noticeable at low frequencies.

e At high frequencies, white noise is more dominant.
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Gyro Bias Instability (°/h) NEW MEXICO TECH

@ Due to flicker noise with spectrum 1/F.
@ Results in random variation in the bias.
e Normally more noticeable at low frequencies.

e At high frequencies, white noise is more dominant.

Variance grows over time.
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Gyro Bias Instability (°/h) NEW MEXICO TECH

@ Due to flicker noise with spectrum 1/F.
@ Results in random variation in the bias.

e Normally more noticeable at low frequencies.

e At high frequencies, white noise is more dominant.

Variance grows over time.

First order Gauss-Markov.

Gyro Noise Characteristics
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Accel Constant Bias (ug) NEW MEXICO TECH

A constant deviation in the accelerometer from the true value, in m/52.
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Accel Constant Bias (ug) NEW MEXICO TECH

A constant deviation in the accelerometer from the true value, in m/sz.

Double integrating a constant bias error of € results in a quadratically growing error in
position of €t?/2.

Accel Noise Characteristics
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Accel Constant Bias (ug) NEW MEXICO TECH

A constant deviation in the accelerometer from the true value, in m/sz.

Double integrating a constant bias error of € results in a quadratically growing error in
position of €t?/2.

Random constant.
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Velocity Random Walk (m/s/+/h) NEW MEXICO TECH

Integrating accelerometer output containing white noise results in velocity random walk (VRW)
(m/s/\/h). Similar to development of ARW, if we double integrate white noise we get

jj deT - s sensor Z Z e(t_l (9)

i=1 j=1

Accel Noise Characteristics
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Velocity Random Walk (m/s/+/h) NEW MEXICO TECH

Integrating accelerometer output containing white noise results in velocity random walk (VRW)
(m/s/\/h). Similar to development of ARW, if we double integrate white noise we get

jj deT - s sensor Z Z 6(t_l (9)

i=1 j=1

Computing the standard deviation results in

op ~ ot32), ] g (10)
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Velocity Random Walk (m/s/+/h) NEW MEXICO TECH

Integrating accelerometer output containing white noise results in velocity random walk (VRW)
(m/s/\/h). Similar to development of ARW, if we double integrate white noise we get

jj deT - s sensor Z Z 6(t_l (9)

i=1 j=1

Computing the standard deviation results in

3/2)

Op & at(

(10)
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Accel Bias Instability (ug) NEW MEXICO TECH
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Grows as /2.

Accel Noise Characteristics
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Accel Bias Instability (ug) NEW MEXICO TECH

Grows as /2.

First order Gauss-Markov.
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Allan Variance Introduction NEW MEXICO TECH

It is a time domain analysis techniques designed originally for characterizing noise in
clocks. It was first proposed by David Allan in 1966.

Allan Variance
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Allan Variance Computation NEW MEXICO TECH

@ Divide your N-point data sequence into adjacent windows of size
n=12428....,M<N/2

@ For every n generate the sequence

Xpj + Xpj+1 + 0+ Xpjan—1 . N
yjn) = 0 it i ,Jzo,l,...,H—l (1)

n

© Plot log-log of the Allan deviation which is square root of
1 N-1
2 2
Tanan(nTs) = 2(N—1) jz;(yj — Yj-1) (12)

versus averaging time 7 = nTg

Allan Variance
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One-sided PSD - Typical Slopes NEW MEXICO TECH
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Using PSD and Allan Variance
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Allan Deviation - Typical Slopes NEW MEXICO TECH
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Using PSD and Allan Variance
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Noise Parameters NEW MEXICO TECH

Noise Type AV o2(1) | PSD (2-sided)
Quantization Noise 33‘—; (27f)%a? T
Angle/Velocity Random Walk %2 a?
Flicker Noise w %
Angular Rate/Accel Random Walk O‘TZT %
Ramp Noise "‘2272 %3

Using PSD and Allan Variance
ooe
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