EE 565: Position, Navigation, and Timing Power Spectral Density Estimation

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

March 20, 2023

				Power Spectral Density 0000000000000
Aly El	-Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023 1 / 37

Sensors suffer from noise effects that can not be removed through calibration, consquently, we need to

- understand the nature of the noise
- be able to extract parameters from actual data
- develop models to mimic noise in simulation to provide performance capabilities

Truth Infinitely long.

Outline ⊙●				Power Spectral Dens
Alu EL	Oseru Kevin Wedeward (NMT)	EE 565: Position Navigati	on and Timing	March 20, 2023 3

Truth	Practice
 Infinitely long. 	• Finite length.

Outline	Review Material	Random Signals and Noise		
Aly E	l-Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	ion, and Timing	Mar

March 20, 2023 3 / 37

3/37

Estimate the distribution of power in a signal. Unfortunately, truth and what is practical cause a problem.

Truth

- Infinitely long.
- Continuous in time and value.

Outline ⊙●				Power Spectral De
Alu El	Osoru Kovin Wodoward (NMT)	EE 565: Position Navigat	ion and Timing	March 20, 2023

Truth

- Infinitely long.
- Continuous in time and value.

Practice

- Finite length.
- Discrete in time and value.

Outline				Power Spectral Den
00				
Alu El-O	seru Kevin Wedeward (NMT)	EE 565: Position Navigati	on and Timing	March 20, 2023

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.

Outline			Discret
00			
Aly E	l-Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing

Power Spectral Density

March 20, 2023 3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

utline		
•		

Random Signa

Signals and Noise

Discrete Signals and Sy Do Power Spectral Density

Aly El-Osery, Kevin Wedeward (NMT)

EE 565: Position, Navigation, and Timing

March 20, 2023 3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

The signal is stochastic in nature.

Outline					
00					
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	3 / 37

(1)

Assume the voltage across a resistor R is e(t) and is producing a current i(t). The instantaneous power per ohm is $p(t) = e(t)i(t)/R = i^2(t)$.

Total Energy

$$E = \lim_{T o \infty} \int_{-T}^{T} i^2(t) dt$$

Average Power

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} i^2(t) dt$$
⁽²⁾

Total Normalized Energy

$$E \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
(3)

Normalized Power

$$P \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(4)

Outline 00	Review Material 0●000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	Density 000
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	5 / 37

Correlation

(5)

For Energy Signals

$$\phi(au) = \int_{-\infty}^\infty x(t) x(t+ au) dt$$

For Power Signals

$$R(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt$$
(6)

For Periodic Signals

$$R(\tau) = \frac{1}{T_0} \int_{T_0} x(t) x(t+\tau) dt$$
(7)

	Review Material				Density
	00000				
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 20, 2023	6 / 37

(9)

Rayleigh's Energy Theorem or Parseval's theorem

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(F)|^2 dF$$
(8)

Energy Spectral Density

$$G(F) riangleq |X(F)|^2$$

with units of *volts*²-*sec*² or, if considered on a per-ohm basis, *watts*-*sec*/Hz=*joules*/Hz

$$P = \int_{-\infty}^{\infty} S(F) dF = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(10)

where we define S(F) as the power spectral density with units of watts/Hz.

	Review Material ○○○○●				Density 000
Aly El-0) Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	8 / 37

- Define an *experiment* with random *outcome*.
- Mapping of the outcome to a variable \Rightarrow random variable.
- Mapping of the outcome to a function \Rightarrow random function.

		Random Signals and Noise			
Aly El-Oser	y, Kevin Wedeward (NMT)	EE 565: Position, Navigati	.on, and Timing	March 20, 2023	9/37

$$F_X(x) =$$
probability that $X \le x = P(X \le x)$ (11)

Describes the manner random variables take different values.

		Random Signals and Noise			
Aly El-0	Dsery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	10 / 37

Probability Density Function (pdf)

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{12}$$

and

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(x) dx$$
(13)

		Random Signals and Noise			
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 20, 2023	11 / 37

If the random variable X takes a set of discrete values x_i with probability p_i , the pdf of X is expressed in terms of Dirac delta functions, i.e.,

$$f_X(x) = \sum_i p_i \delta(x - x_i) \tag{14}$$

		Random Signals and Noise		
		000000000000000000000000000000000000000		
Aly El-Osery, Kevin Wedev	vard (NMT)	EE 565: Position, Navigation, and	l Timing	

March 20, 2023 13 / 37

		Random Signals and Noise		Power Spectral De	
Alu El-Os	seru. Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	14 / 37

Histogram and Pdf of random samples

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	Density 000
Aly El-	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 20, 2023	14 / 37

Mean of a Discrete RV

$$\bar{X} = \mathbb{E}[X] = \sum_{j=1}^{M} x_j P_j \tag{16}$$

Mean of a Continuous RV

$$\bar{X} = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$
(17)

Variance of a RV

$$\sigma_X^2 \triangleq \mathbb{E}\left\{ [X - \mathbb{E}(X)]^2 \right\} = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$
(18)

		Random Signals and Noise			
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 20, 2023	15 / 37

(19)

(20)

(21)

Given a two random variables X and Y.

Covariance

$$\mu_{XY} = \mathbb{E}\left\{ [X - ar{x}][Y - ar{Y}]
ight\} = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Correlation Coefficient

$$p_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}$$

Autocorrelation

$${\sf F}_X(au)={\mathbb E}[X(t)X(t+ au)]$$

		Random Signals and Noise			
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	16 / 37

Terminology

Figure: Sample functions of a random process

- $X(t, \zeta_i)$: sample function.
- The governing experiment: random or stochastic process.
- All sample functions: ensemble.
- $X(t_j, \zeta)$: random variable.

		Random Signals and Noise			
		000000000000000000000000000000000000000			
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigat	ion, and Timing	March 20, 2023	17 / 37

If the joint pdfs depend only on the time difference regardless of the time origin, then the random process is known as *stationary*.

For stationary process means and variances are independent of time and the covariance depends only on the time difference.

		Random Signals and Noise			
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	and Timing	March 20, 2023	18 / 37

If the joint pdfs depends on the time difference but the mean and variances are time-independent, then the random process is known as *wide-sense-stationary*.

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	. Density 000
Aly El-O	Dsery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	19 / 37

If the time statistics equals ensemble statistics, then the random process is known as *ergodic*.

Any statistic calculated by averaging of all members of an ergodic ensemble at a fixed time can also be calculated by using a single representative waveform and averging over all time.

		Random Signals and Noise			l Density 000
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 20, 2023	20 / 37

Given a sample function $X(t, \zeta_i)$ of a random process, we obtain the power spectral density by

$$S(F) \stackrel{\mathcal{F}}{\longleftrightarrow} \Gamma(\tau)$$
 (22)

i.e., for a wide sense stationary signal, the power spectral density and autocorrelation are Fourier transform pairs.

		Random Signals and Noise			Density 000
Aly El-C	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	21 / 37

$$\xrightarrow{x(t)} H(F) \xrightarrow{y(t)}$$

$$S_Y(F) = |H(F)|^2 S_X(F)$$

Noise Shaping

If x(t) is white noise, we can design the filter h(t) to "shape" the noise.

Outline	Review Material	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
			00		
Alı	El-Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	, and Timing	March 20, 2023	23 / 3

	Review Material	Random Signals and Noise	Discrete Signals and Systems	Power Spectra	l Density
Aly El-	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	23 / 3

			Discrete Signals and Systems ●0		l Density 000
Aly El-C)sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	23 / 3

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems ●0	Power Spectra	Density
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 20, 2023	23 / 37

			Discrete Signal ●0	ls and Systems		
Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing		March 20, 2023	23 / 37

- Must sample more than twice bandwidth to avoid aliasing.
- FFT represents a periodic version of the time domain signal \rightarrow could have time domain aliasing.
- Number of points in FFT is the same as number of points in time domain signal.

			Discrete Signals and Systems ⊙●		
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation	and Timing	March 20, 2023	24 / 37

What we want is

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_X(F)$$

For infinitely long signals.

				Power Spectra	l Density 0000
Aly El-C)sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	25 / 37

What we want is

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_X(F)$$

For infinitely long signals.

What we can compute is

$$\gamma_X(m) = \mathbb{E}[X(n)X(n+m)] \xrightarrow{\mathcal{DFT}} P_X(f)$$

For finite length signals.

				Power Spectral	. Density 000
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	25 / 37

As $N \to \infty$ and in the mean squared sense

Unbiased

Asymptotically the mean of the estimate approaches the true power.

Variance

Variance of the estimate approaches zero.

Resulting in a consistent estimate of the power spectrum.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00
 00000
 000000000000
 00
 0000000000000
 00

 Aly El-Osery, Kevin Wedeward
 (NMT)
 EE 565: Position, Navigation, and Timing
 March 20, 2023
 26 / 37

Periodogram

computed using 1/N times the magnitude squared of the FFT

 $\lim_{N\to\infty}\mathbb{E}[P_X(f)]=S_X(f)$

 $\lim_{N\to\infty} var[P_X(f)] = S_X^2(f)$

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density 000
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigat	tion, and Timing	March 20, 2023	27 / 37

Periodogram

computed using 1/N times the magnitude squared of the FFT

$$\lim_{N\to\infty}\mathbb{E}[P_X(f)]=S_X(f)$$

$$\lim_{N\to\infty} var[P_X(f)] = S_X^2(f)$$

Welch Method

computed by segmenting the data (allowing overlaps), windowing the data in each segment then computing the average of the resultant priodogram

$$\mathbb{E}[P_X(f)] = \frac{1}{2\pi MU} S_X(f) \circledast W(f)$$
$$var[P_X(f)] \approx \frac{9}{8L} S_X^2(f)$$

				Power Spectral	Density 000
Aly El-Osery	, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	27 / 37

Assuming data length *N*, segment length *M*, Bartlett window, and 50% overlap

- FFT length = $M = 1.28/\Delta f = 1.28F_s/\Delta F$
- Resulting number of segments = $L = \frac{2N}{M}$
- Length of data collected in sec. = $\frac{1.28L}{2\Delta F}$

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	. Density 000
Aly El-C	Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	28 / 37

[Pxx,f] = pwelch(x,window,noverlap,... nfft,fs,'range')

You can use [] in fields that you want the default to be used.

				Power Spectra	Density 000
Aly El-Ose	ry, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	29 / 37

Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

Outline	Review Material	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
00	00000	0000000000000	00		000
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigatio	on, and Timing	March 20, 2023	30 / 37

Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

				ms Power Spectral	Density 200
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigat	on, and Timing	March 20, 2023	30 / 37

Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

				Power Spectra	Density 000
Aly El-0	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	30 / 37

[Pxx,f] = pwelch(x,128,[],[],Fs,'onesided')

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	Density 000
Aly El-0	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	31 / 37

[Pxx,f] = pwelch(x,128,[],[],Fs,'onesided')

				Power Spectral	. Density 000
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	on, and Timing	March 20, 2023	31 / 37

[Pxx,f] = pwelch(x,128,[],[],Fs,'onesided')

- Reduced window size.
- Variance is now smaller.

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	Density 000
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigati	on, and Timing	March 20, 2023	31 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

Frequency (Hz)

				Power Spectral	l Density 000
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigatio	on, and Timing	March 20, 2023	32 / 37

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

- Window larger than length of data.
- Frequency components can't be resolved.
- Variance high.

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems 00	Power Spectral	Density 000
Aly El-C	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	32 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

Outline	Review Material	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	l Density
				000000000	000
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	33 / 3

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

Frequency (Hz)

				Power Spectra	l Density 000
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigation	on, and Timing	March 20, 2023	33 / 37

pwelch Function - cos + WGN signal

March 20, 2023

33 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

Aly El-Osery, Kevin Wedeward (NMT) EE 565: Position, Navigation, and Timing

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

Outline 00	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectra	l Density 000
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	34 / 3

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

Frequency (Hz)

				Power Spectral	. Density 000
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigati	on, and Timing	March 20, 2023	34 / 37

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

- Decreasing the window size decreases the variance.
- Still can't resolve the two frequencies.

				Power Spectral	Density 000
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	34 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

				Power Spectral	Density ●00
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	35 / 37

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

Frequency (Hz)

				ystems Power Spect	ral Density 00●00
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	35 / 37

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

- Length of data sequence must be increased.
- Still can't resolve the two frequencies as the window size is too small.

				Power Spectral	Density ●00
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	35 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');

Outline	Review Material	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
				000000000	000
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	36 / 3

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');

Frequency (Hz)

				Power Spectral 000000000	. Density o●o
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 20, 2023	36 / 37

pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');

• Now we can resolve the two frequencies.

				Power Spectral	l Density 0●0
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	36 / 37

- The length of the data sequence determines the maximum resolution that can be observed.
- Increasing the window length of each segment in the data increases the resolution.
- Decreasing the window length of each segment in the data decreases the variance of the estimate.
- nFFT only affects the amount of details shown and not the resolution.

				Power Spectral	. Density 00●
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 20, 2023	37 / 37