Lecture

Error Mechanization (ECEF)

EE 570: Location and Navigation

Lecture Notes Update on March 13, 2014

Aly El-Osery, Electrical Engineering Dept., New Mexico Tech
Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University

1 Attitude

ECEF Attitude Error

$$
\begin{gather*}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\hat{\Omega}_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \hat{\Omega}_{e b}^{b}+\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
{\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right]=\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \hat{C}_{e}^{b}=\left[\hat{C}_{b}^{e}\left(\delta \vec{\omega}_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \times\right]} \tag{1}\\
\delta \dot{\vec{\psi}}_{e b}^{e}=\hat{C}_{b}^{e}\left(\delta \omega_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \tag{2}
\end{gather*}
$$

ECEF Attitude Error (cont.)

$$
\begin{align*}
\delta \dot{\vec{\psi}}_{e b}^{e} & =\hat{C}_{b}^{e}\left(\delta \omega_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\hat{C}_{b}^{e}\left(\vec{\omega}_{i e}^{b}-\hat{\vec{\omega}}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\left(\hat{C}_{b}^{e} C_{e}^{b}-\mathcal{I}\right) \vec{\omega}_{i e}^{e} \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}+\delta \vec{\psi}_{e b}^{e} \times \vec{\omega}_{i e}^{e} \\
\delta & \dot{\vec{\psi}}_{e b}^{e}=\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\vec{\Omega}_{i e}^{e} \delta \vec{\psi}_{e b}^{e} \tag{3}
\end{align*}
$$

2 Velocity

Velocity

$$
\begin{gather*}
\dot{\vec{v}}_{e b}^{e}=C_{b}^{e} \vec{f}_{i b}^{b}+\vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \overrightarrow{\vec{v}}_{e b}^{e} \tag{4}\\
\dot{\hat{\vec{v}}}_{e b}^{e}=\hat{C}_{b}^{e} \hat{\vec{f}}_{i b}^{b}+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \\
=\left(\mathcal{I}-\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) C_{b}^{e}\left(\vec{f}_{i b}^{b}-\delta \vec{f}_{i b}^{b}\right)+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \tag{5}\\
\delta \dot{\vec{v}}_{e b}^{e}=\dot{\vec{v}}_{e b}^{e}-\dot{\vec{v}}_{e b}^{e}=\left[\delta \vec{\psi}_{e b}^{e} \times\right] C_{b}^{e} \vec{f}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e} \\
=\left[\delta \vec{\psi}_{e b}^{e} \times\right] \hat{C}_{b}^{e} \hat{f}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e} \\
\delta \dot{\vec{v}}_{e b}^{e}=-\left[\hat{C}_{b}^{e} \hat{f}_{i b}^{b} \times\right] \delta \vec{\psi}_{e b}^{e}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \tag{6}
\end{gather*}
$$

3 Gravity
Gravity Error

$$
\begin{equation*}
\delta \vec{g}_{b}^{e} \approx \frac{2 g_{0}\left(\hat{L}_{b}\right)}{r_{e S}^{e}\left(\hat{L}_{b}\right)} \frac{\hat{\vec{r}}_{e b}^{e}}{\left|\hat{\vec{r}}_{e b}^{e}\right|^{2}}\left(\hat{\vec{r}}_{e b}^{e}\right)^{T} \delta \vec{r}_{e b}^{e} \tag{7}
\end{equation*}
$$

4 Position

Position

$$
\begin{align*}
\dot{\vec{r}}_{e b}^{e} & =\vec{v}_{e b}^{e} \tag{8}\\
\delta \dot{\vec{r}}_{e b}^{e} & =\delta \vec{v}_{e b}^{e} \tag{9}
\end{align*}
$$

5 Summary

Summary - in terms of $\delta \vec{f}_{i b^{\prime}}^{b} \delta \vec{\omega}_{i b}^{b}$

$$
\begin{align*}
\left(\begin{array}{c}
\delta \dot{\vec{\psi}}_{e b}^{e} \\
\delta \dot{\vec{v}}_{e b}^{e} \\
\delta \dot{\vec{r}}_{e b}^{e}
\end{array}\right)= & {\left[\begin{array}{ccc}
-\Omega_{i e}^{e} & 0_{3 \times 3} & 0_{3 \times 3} \\
-\left[\hat{C}_{b}^{e} \hat{f}_{i b}^{b} \times\right] & -2 \Omega_{i e}^{e} & \left.\frac{2 g_{0}\left(\hat{L}_{b}\right)}{r_{e S}^{e}\left(\hat{\vec{L}}_{b}^{e}\right)} \right\rvert\, \\
\left.\hat{\vec{r}}_{e b}^{e}\right|^{2} & \left.\hat{\vec{r}}_{e b}^{e}\right)^{T} \\
0_{3 \times 3} & \mathcal{I}_{3 \times 3} & 0_{3 \times 3}
\end{array}\right]\left(\begin{array}{c}
\delta \vec{\psi}_{e b}^{e} \\
\delta \vec{v}_{e b}^{e} \\
\delta \vec{\delta}_{e b}^{e}
\end{array}\right)+} \tag{10}\\
& {\left[\begin{array}{cc}
0 & \hat{C}_{b}^{e} \\
\hat{C}_{b}^{e} & 0 \\
0 & 0
\end{array}\right]\binom{\delta \vec{f}_{i b}^{b}}{\delta \vec{\omega}_{i b}^{b}} }
\end{align*}
$$

A Basic Definitions

Notation Used

- Truth value
- Measured value

$$
\vec{x}
$$

$$
\tilde{\vec{x}}
$$

- Estimated or computed value

$$
\hat{\vec{x}}
$$

- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

B Linearization

Linearization using Taylor Series Expansion
Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$
Let's assume we have an estimate of \vec{x}, i.e., $\hat{\vec{x}}$ such that $\vec{x}=\hat{\vec{x}}+\delta \vec{x}$

$$
\begin{equation*}
\dot{\vec{x}}=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}+\delta \vec{x}, t) \tag{11}
\end{equation*}
$$

Using Taylor series expansion

$$
\begin{align*}
& f(\hat{\vec{x}}+\delta \vec{x}, t)=\dot{\hat{\vec{x}}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}, t)+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x}+\text { H.O.T } \\
& \approx \dot{\hat{x}}+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{x}} \delta \vec{x} \\
&\left.\Rightarrow \delta \dot{\vec{x}} \approx \frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x} \tag{12}
\end{align*}
$$

C Inertial Measurements

Actual Measurements
Initially the accelerometer and gyroscope measurements, $\tilde{\tilde{f}}_{i b}^{b}$ and $\tilde{\vec{\omega}}_{i b}^{b}$, respectively, will be modeled as

$$
\begin{gather*}
\tilde{\vec{f}}_{i b}^{b}=\vec{f}_{i b}^{b}+\Delta \vec{f}_{i b}^{b} \tag{13}\\
\tilde{\vec{\omega}}_{i b}^{b}=\vec{\omega}_{i b}^{b}+\Delta \vec{\omega}_{i b}^{b} \tag{14}
\end{gather*}
$$

where $\vec{f}_{i b}^{b}$ and $\vec{\omega}_{i b}^{b}$ are the specific force and angular rates, respectively; and $\Delta \vec{f}_{i b}^{b}$ and $\Delta \vec{\omega}_{i b}^{b}$ represents the errors. In later lectures we will discuss more detailed description of these errors.

Error Modeling Example

Accelerometers

$$
\begin{equation*}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l}_{a}+\vec{w}_{a} \tag{15}
\end{equation*}
$$

Gyroscopes

$$
\begin{equation*}
\tilde{\vec{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{16}
\end{equation*}
$$

Pos, Vel, Force and Angular Rate Errors

- Position error

$$
\begin{equation*}
\delta \vec{r}_{\beta b}^{\gamma}=\vec{r}_{\beta b}^{\gamma}-\hat{\vec{r}}_{\beta b}^{\gamma} \tag{17}
\end{equation*}
$$

- Velocity error

$$
\begin{equation*}
\delta \vec{v}_{\beta b}^{\gamma}=\vec{v}_{\beta b}^{\gamma}-\hat{\vec{v}}_{\beta b}^{\gamma} \tag{18}
\end{equation*}
$$

- Specific force errors

$$
\begin{gather*}
\delta \vec{f}_{i b}^{b}=\vec{f}_{i b}^{b}-\hat{\vec{f}}_{i b}^{b} \tag{19}\\
\Delta_{e} \vec{f}_{i b}^{b}=\Delta \vec{f}_{i b}^{b}-\Delta \hat{f}_{i b}^{b}=-\delta \vec{f}_{i b}^{b} \tag{20}
\end{gather*}
$$

- Angular rate errors

$$
\begin{gather*}
\delta \vec{\omega}_{i b}^{b}=\vec{\omega}_{i b}^{b}-\hat{\vec{\omega}}_{i b}^{b} \tag{21}\\
\Delta_{e} \vec{\omega}_{i b}^{b}=\Delta \vec{\omega}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b}=-\delta \vec{\omega}_{i b}^{b} \tag{22}
\end{gather*}
$$

D Attitude Error

Attitude Error Definition
Define

$$
\begin{equation*}
\delta C_{b}^{\gamma}=C_{b}^{\gamma} \hat{C}_{\gamma}^{b}=e^{\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]} \approx \mathcal{I}+\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right] \tag{23}
\end{equation*}
$$

This is the error in attitude resulting from errors in estimating the angular rates. \qquad

Attitude Error Properties
The attitude error is a multiplicative small angle transformation from the actual frame to the computed frame

$$
\begin{equation*}
\hat{C}_{b}^{\gamma}=\left(\mathcal{I}-\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]\right) C_{b}^{\gamma} \tag{24}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
C_{b}^{\gamma}=\left(\mathcal{I}+\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]\right) \hat{C}_{b}^{\gamma} \tag{25}
\end{equation*}
$$

E Estimates of Sensor Measurements

Specific Force and Agnular Rates
Similarly we can attempt to estimate the specific force and angular rate by applying correction based on our estimate of the error.

$$
\begin{align*}
\hat{\vec{f}}_{i b}^{b} & =\tilde{\vec{f}}_{i b}^{b}-\Delta \hat{\vec{f}}_{i b}^{b} \tag{26}\\
\hat{\vec{\omega}}_{i b}^{b} & =\tilde{\vec{\omega}}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b} \tag{27}
\end{align*}
$$

where $\hat{\vec{f}}_{i b}^{b}$ and $\hat{\vec{\omega}}_{i b}^{b}$ are the accelerometer and gyroscope estimated calibration values, respectively.

