EE 570: Location and Navigation Error Mechanization (ECEF)

Aly El-Osery ${ }^{1} \quad$ Stephen Bruder ${ }^{2}$

${ }^{1}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA
${ }^{2}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

March 13, 2014

ECEF Attitude Error

$$
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]=
$$

$$
\begin{gathered}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\psi}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\mathcal{C}}_{b}^{e}=
\end{gathered}
$$

$$
\begin{gathered}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\hat{\Omega}_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right)
\end{gathered}
$$

ECEF Attitude Error

$$
\begin{gathered}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\hat{\Omega}_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \hat{\Omega}_{e b}^{b}+\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
\because\left[\delta \vec{\psi}_{e b}^{e} \times\right] \delta \Omega_{e b}^{b} \approx 0
\end{gathered}
$$

ECEF Attitude Error

$$
\begin{aligned}
& \dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
& \left.\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
& \approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\Omega_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
& \approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \hat{\Omega}_{e b}^{b}+\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right)
\end{aligned}
$$

ECEF Attitude Error

$$
\begin{gather*}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\hat{\Omega}_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \hat{\Omega}_{e b}^{b}+\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
{\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right]=\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \hat{C}_{e}^{b}=\left[\hat{C}_{b}^{e}\left(\delta \vec{\omega}_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \times\right]} \tag{1}
\end{gather*}
$$

ECEF Attitude Error

$$
\begin{gather*}
\dot{C}_{b}^{e}=C_{b}^{e} \Omega_{e b}^{b}=C_{b}^{e}\left(\Omega_{i b}^{b}-\Omega_{i e}^{b}\right)=\frac{d}{d t}\left[\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\right]= \\
\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \Omega_{e b}^{b}=\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right] \hat{C}_{b}^{e}+\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \dot{\hat{C}}_{b}^{e}= \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e}\left(\hat{\Omega}_{e b}^{b}+\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
\approx\left(\mathcal{I}+\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) \hat{C}_{b}^{e} \hat{\Omega}_{e b}^{b}+\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \\
{\left[\delta \dot{\vec{\psi}}_{e b}^{e} \times\right]=\hat{C}_{b}^{e}\left(\delta \Omega_{i b}^{b}-\delta \Omega_{i e}^{b}\right) \hat{C}_{e}^{b}=\left[\hat{C}_{b}^{e}\left(\delta \vec{\omega}_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \times\right]} \tag{1}\\
\delta \dot{\vec{\psi}}_{e b}^{e}=\hat{C}_{b}^{e}\left(\delta \omega_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \tag{2}
\end{gather*}
$$

ECEF Attitude Error (cont.)

$$
\begin{aligned}
\delta \dot{\vec{\psi}}_{e b}^{e} & =\hat{C}_{b}^{e}\left(\delta \omega_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\hat{C}_{b}^{e}\left(\vec{\omega}_{i e}^{b}-\hat{\vec{\omega}}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\left(\hat{C}_{b}^{e} C_{e}^{b}-\mathcal{I}\right) \vec{\omega}_{i e}^{e} \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}+\delta \vec{\psi}_{e b}^{e} \times \vec{\omega}_{i e}^{e}
\end{aligned}
$$

$$
\begin{aligned}
\delta \dot{\vec{\psi}}_{e b}^{e} & =\hat{C}_{b}^{e}\left(\delta \omega_{i b}^{b}-\delta \vec{\omega}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\hat{C}_{b}^{e}\left(\vec{\omega}_{i e}^{b}-\hat{\vec{\omega}}_{i e}^{b}\right) \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}-\left(\hat{C}_{b}^{e} C_{e}^{b}-\mathcal{I}\right) \vec{\omega}_{i e}^{e} \\
& =\hat{C}_{b}^{e} \delta \omega_{i b}^{b}+\delta \vec{\psi}_{e b}^{e} \times \vec{\omega}_{i e}^{e}
\end{aligned}
$$

$$
\begin{equation*}
\dot{\delta}_{e b}^{e}=\hat{C}_{b}^{e} \delta_{\omega} \dot{i b}_{b}^{b}-\vec{\Omega}_{i e}^{e} \delta_{\psi_{e b}^{e}}^{e} \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
\dot{\vec{v}}_{e b}^{e}=C_{b}^{e} \vec{f}_{i b}^{b}+\vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \vec{v}_{e b}^{e} \tag{4}\\
\dot{\hat{\vec{v}}}_{e b}^{e}=\hat{C}_{b}^{e} \hat{\vec{f}}_{i b}^{b}+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \tag{5}\\
=\left(\mathcal{I}-\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) C_{b}^{e}\left(\vec{f}_{i b}^{b}-\delta \vec{f}_{i b}^{b}\right)+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{V}}_{e b}^{e}
\end{gather*}
$$

$$
\begin{gather*}
\dot{\vec{v}}_{e b}^{e}=C_{b}^{e} \vec{f}_{i b}^{b}+\vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \vec{v}_{e b}^{e} \tag{4}\\
\dot{\hat{v}}_{e b}^{e}=\hat{C}_{b}^{e} \hat{\vec{f}}_{i b}^{b}+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \tag{5}\\
=\left(\mathcal{I}-\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) C_{b}^{e}\left(\vec{f}_{i b}^{b}-\delta \vec{f}_{i b}^{b}\right)+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \\
\delta \dot{\vec{v}}_{e b}^{e}=\dot{\vec{v}}_{e b}^{e}-\dot{\vec{v}}_{e b}^{e}=\left[\delta \vec{\psi}_{e b}^{e} \times\right] C_{b}^{e} \vec{f}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{\delta}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e} \\
=\left[\delta \vec{\psi}_{e b}^{e} \times\right] \hat{C}_{b}^{e} \hat{\vec{f}}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e}
\end{gather*}
$$

$$
\begin{gathered}
\dot{\vec{v}}_{e b}^{e}=C_{b}^{e} \vec{f}_{i b}^{b}+\vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \vec{v}_{e b}^{e} \\
\dot{\vec{v}}_{e b}^{e}=\hat{C}_{b}^{e} \hat{\vec{f}}_{i b}^{b}+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \\
=\left(\mathcal{I}-\left[\delta \vec{\psi}_{e b}^{e} \times\right]\right) C_{b}^{e}\left(\vec{f}_{i b}^{b}-\delta \vec{f}_{i b}^{b}\right)+\hat{\vec{g}}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{V}}_{e b}^{e} \\
\delta \dot{\vec{v}}_{e b}^{e}=\dot{\vec{v}}_{e b}^{e}-\dot{\overrightarrow{\vec{v}}}_{e b}^{e}=\left[\delta \vec{\psi}_{e b}^{e} \times\right] C_{b}^{e} \vec{f}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e} \\
=\left[\delta \vec{\psi}_{e b}^{e} \times\right] \hat{C}_{b}^{e} \overrightarrow{\vec{f}}_{i b}^{b}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \delta \vec{v}_{e b}^{e}
\end{gathered}
$$

$$
\begin{equation*}
\delta \dot{\vec{v}}_{e b}^{e}=-\left[\hat{C}_{b}^{e} \hat{f}_{i b}^{b} \times\right] \delta \vec{\psi}_{e b}^{e}+\hat{C}_{b}^{e} \delta \vec{f}_{i b}^{b}+\delta \vec{g}_{b}^{e}-2 \Omega_{i e}^{e} \hat{\vec{v}}_{e b}^{e} \tag{6}
\end{equation*}
$$

Gravity Error

$$
\begin{equation*}
\delta \vec{g}_{b}^{e} \approx \frac{2 g_{0}\left(\hat{L}_{b}\right)}{r_{e S}^{e}\left(\hat{L}_{b}\right)} \frac{\hat{r}_{e b}^{e}}{\left|\hat{r}_{e b}^{e}\right|^{2}}\left(\hat{\vec{r}}_{e b}^{e}\right)^{T} \delta \vec{r}_{e b}^{e} \tag{7}
\end{equation*}
$$

Position

$$
\begin{equation*}
\dot{\vec{r}}_{e b}^{e}=\vec{v}_{e b}^{e} \tag{8}
\end{equation*}
$$

Position

$$
\begin{equation*}
\dot{\vec{r}}_{e b}^{e}=\vec{v}_{e b}^{e} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\delta \dot{\vec{r}}_{e b}^{e}=\delta \vec{v}_{e b}^{e} \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
\left(\begin{array}{c}
\delta \dot{\vec{\psi}}_{e b}^{e} \\
\delta \dot{\vec{v}}_{e b}^{e} \\
\delta \dot{\vec{r}}_{e b}^{e}
\end{array}\right)= & {\left[\begin{array}{ccc}
-\Omega_{i e}^{e} & 0_{3 \times 3} & 0_{3 \times 3} \\
-\left[\begin{array}{cc}
\left.\hat{C}_{b}^{e} \hat{\vec{F}}_{i b}^{b} \times\right] & -2 \Omega_{i e}^{e} \\
0 & \left.\frac{2 g_{0}\left(\hat{L}_{b}\right)}{r_{e S}^{e}\left(\hat{L}_{b}\right)}\right) \\
\hat{\vec{r}}_{e b}^{e} & \left.\hat{\vec{r}}_{e b}^{e}\right|^{2} \\
\hat{\vec{r}}_{e b}^{e}
\end{array}\right)^{T} & \mathcal{I}_{3 \times 3} & 0_{3 \times 3}
\end{array}\right]\left(\begin{array}{c}
\delta \vec{\psi}_{e b}^{e} \\
\delta \vec{v}_{e b}^{e} \\
\delta \vec{r}_{e b}^{e}
\end{array}\right)+} \\
& {\left[\begin{array}{cc}
0 & \hat{C}_{b}^{e} \\
\hat{C}_{b}^{e} & 0 \\
0 & 0
\end{array}\right]\binom{\delta \vec{f}_{i b}^{b}}{\delta \vec{\omega}_{i b}^{b}} }
\end{aligned}
$$

Notation Used

- Truth value

$$
\vec{x}
$$

- Measured value

$$
\tilde{\vec{x}}
$$

- Estimated or computed value

$$
\hat{\vec{x}}
$$

- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

Notation Used

- Truth value
- Measured value

$$
\underset{\vec{x}}{\sim}
$$

- Estimated or computed value

$$
\hat{\vec{x}}
$$

- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

Notation Used

- Truth value
- Measured value
- Estimated or computed value

$$
\hat{\vec{x}}
$$

- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

Notation Used

- Truth value

$$
\vec{x}
$$

- Measured value

$$
\tilde{\vec{x}}
$$

- Estimated or computed value
- Error

$$
\delta \vec{x}=\vec{x}-\hat{\vec{x}}
$$

Notation Used

- Truth value

$$
\vec{x}
$$

- Measured value

$$
\tilde{\vec{x}}
$$

- Estimated or computed value

Linearization using Taylor Series Expansion

Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$

Linearization using Taylor Series Expansion

Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$
Let's assume we have an estimate of \vec{x}, i.e., $\hat{\vec{x}}$ such that $\vec{x}=\hat{\vec{x}}+\delta \vec{x}$

$$
\begin{equation*}
\dot{\vec{x}}=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}+\delta \vec{x}, t) \tag{11}
\end{equation*}
$$

Linearization using Taylor Series Expansion

Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$ Let's assume we have an estimate of \vec{x}, i.e., $\hat{\vec{x}}$ such that $\vec{x}=\hat{\vec{x}}+\delta \vec{x}$

$$
\begin{equation*}
\dot{\vec{x}}=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}+\delta \vec{x}, t) \tag{11}
\end{equation*}
$$

Using Taylor series expansion

$$
\begin{aligned}
f(\hat{\vec{x}}+\delta \vec{x}, t)=\dot{\vec{x}}+\delta \dot{\vec{x}} & =f(\hat{\vec{x}}, t)+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{x}} \delta \vec{x}+\text { H.O.T } \\
& \approx \dot{\hat{x}}+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x}
\end{aligned}
$$

Linearization using Taylor Series Expansion

Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$ Let's assume we have an estimate of \vec{x}, i.e., $\hat{\vec{x}}$ such that $\vec{x}=\hat{\vec{x}}+\delta \vec{x}$

$$
\begin{equation*}
\dot{\vec{x}}=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}+\delta \vec{x}, t) \tag{11}
\end{equation*}
$$

Using Taylor series expansion

$$
\begin{aligned}
f(\hat{\vec{x}}+\delta \vec{x}, t)=\dot{\vec{x}}+\delta \dot{\vec{x}} & =f(\hat{\vec{x}}, t)+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{x}} \delta \vec{x}+\text { H.O.T } \\
& \approx \dot{\hat{x}}+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x}
\end{aligned}
$$

Linearization using Taylor Series Expansion

Given a non-linear system $\dot{\vec{x}}=f(\vec{x}, t)$ Let's assume we have an estimate of \vec{x}, i.e., $\hat{\vec{x}}$ such that $\vec{x}=\hat{\vec{x}}+\delta \vec{x}$

$$
\begin{equation*}
\dot{\vec{x}}=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}+\delta \vec{x}, t) \tag{11}
\end{equation*}
$$

Using Taylor series expansion

$$
\begin{align*}
& f(\hat{\vec{x}}+\delta \vec{x}, t)=\dot{\vec{x}}+\delta \dot{\vec{x}}=f(\hat{\vec{x}}, t)+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{x}} \delta \vec{x}+H . O . T \\
& \approx \dot{\hat{x}}+\left.\frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x} \\
&\left.\Rightarrow \delta \dot{\vec{x}} \approx \frac{\partial f(\vec{x}, t)}{\partial \vec{x}}\right|_{\vec{x}=\hat{\vec{x}}} \delta \vec{x} \tag{12}
\end{align*}
$$

Actual Measurements

Initially the accelerometer and gyroscope measurements, $\tilde{\vec{f}}_{i b}^{b}$ and $\tilde{\vec{\omega}}_{i b}^{b}$, respectively, will be modeled as

$$
\begin{gather*}
\tilde{\vec{f}}_{i b}^{b}=\vec{f}_{i b}^{b}+\Delta \vec{f}_{i b}^{b} \tag{13}\\
\tilde{\vec{\omega}}_{i b}^{b}=\vec{\omega}_{i b}^{b}+\Delta \vec{\omega}_{i b}^{b} \tag{14}
\end{gather*}
$$

where $\vec{f}_{i b}^{b}$ and $\vec{\omega}_{i b}^{b}$ are the specific force and angular rates, respectively; and $\Delta \vec{f}_{i b}^{b}$ and $\Delta \vec{\omega}_{i b}^{b}$ represents the errors. In later lectures we will discuss more detailed description of these errors.

Actual Measurements

Initially the accelerometer and gyroscope measurements, $\tilde{\vec{f}}_{i b}^{b}$ and $\tilde{\vec{\omega}}_{i b}^{b}$, respectively, will be modeled as

$$
\left.\begin{array}{r}
\tilde{\vec{f}}_{i b}^{b}=\vec{f}_{i b}^{b}+\Delta \vec{f}_{i b}^{b} \tag{13}\\
\tilde{\vec{\omega}}_{i b}^{b}=\vec{\omega}_{i b}^{b}+\Delta \vec{\omega}_{i b}^{b}
\end{array}\right\} \begin{aligned}
& \text { these terms may } \\
& \text { be expanded further }
\end{aligned}
$$

where $\vec{f}_{i b}^{b}$ and $\vec{\omega}_{i b}^{b}$ are the specific force and angular rates, respectively; and $\Delta \vec{f}_{i b}^{b}$ and $\Delta \vec{\omega}_{i b}^{b}$ represents the errors. In later lectures we will discuss more detailed description of these errors.

Error Modeling Example

Accelerometers

$$
\begin{equation*}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l}_{a}+\vec{w}_{a} \tag{15}
\end{equation*}
$$

Gyroscopes

$$
\begin{equation*}
\tilde{\vec{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{16}
\end{equation*}
$$

Error Modeling Example

Accelerometers

Error Modeling Example

Accelerometers

$$
\begin{align*}
& \qquad \tilde{\tilde{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+\bigwedge_{M_{a}}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l}_{a}+\vec{w}_{a} \tag{15}\\
& \text { Misalignment and SF Errors }
\end{align*}
$$

Gyroscopes

$$
\begin{equation*}
\tilde{\omega}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+\mathfrak{M}_{g}\right) \vec{w}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{16}
\end{equation*}
$$

Error Modeling Example

Accelerometers

$$
\begin{equation*}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\vec{w}_{a} \tag{15}
\end{equation*}
$$

Gyroscopes

$$
\begin{equation*}
\tilde{\vec{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{16}
\end{equation*}
$$

Error Modeling Example

Accelerometers

$$
\begin{equation*}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l_{a}}+\vec{w}_{a} \tag{15}
\end{equation*}
$$

G-Sensitivity

Gyroscopes

$$
\begin{equation*}
\tilde{\vec{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\vec{w}_{g} \tag{16}
\end{equation*}
$$

Error Modeling Example

Accelerometers

$$
\begin{array}{r}
\tilde{\vec{f}}_{i b}^{b}=\vec{b}_{a}+\left(\mathcal{I}+M_{a}\right) \vec{f}_{i b}^{b}+\overrightarrow{n l}_{a}+\vec{k}_{a} \tag{15}\\
\text { Noise }
\end{array}
$$

Gyroscopes

$$
\begin{equation*}
\tilde{\tilde{\omega}}_{i b}^{b}=\vec{b}_{g}+\left(\mathcal{I}+M_{g}\right) \vec{\omega}_{i b}^{b}+G_{g} \vec{f}_{i b}^{b}+\varlimsup_{g} \tag{16}
\end{equation*}
$$

Pos, Vel, Force and Angular Rate Errors

- Position error

$$
\begin{equation*}
\delta \vec{r}_{\beta b}^{\gamma}=\vec{r}_{\beta b}^{\gamma}-\hat{\vec{r}}_{\beta b}^{\gamma} \tag{17}
\end{equation*}
$$

- Velocity error

$$
\begin{equation*}
\delta \vec{v}_{\beta b}^{\gamma}=\vec{v}_{\beta b}^{\gamma}-\hat{\vec{v}}_{\beta b}^{\gamma} \tag{18}
\end{equation*}
$$

- Specific force errors

$$
\begin{equation*}
\delta \vec{f}_{i b}^{b}=\vec{f}_{i b}^{b}-\hat{\vec{f}}_{i b}^{b} \tag{19}
\end{equation*}
$$

$$
\begin{equation*}
\Delta_{e} \vec{f}_{i b}^{b}=\Delta \vec{f}_{i b}^{b}-\Delta \hat{\vec{f}}_{i b}^{b}=-\delta \vec{f}_{i b}^{b} \tag{20}
\end{equation*}
$$

- Angular rate errors

$$
\begin{gather*}
\delta \vec{\omega}_{i b}^{b}=\vec{\omega}_{i b}^{b}-\hat{\vec{\omega}}_{i b}^{b} \tag{21}\\
\Delta_{e} \vec{\omega}_{i b}^{b}=\Delta \vec{\omega}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b}=-\delta \vec{\omega}_{i b}^{b} \tag{22}
\end{gather*}
$$

Attitude Error Definition

Define

$$
\begin{equation*}
\delta C_{b}^{\gamma}=C_{b}^{\gamma} \hat{C}_{\gamma}^{b}=e^{\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]} \approx \mathcal{I}+\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right] \tag{23}
\end{equation*}
$$

This is the error in attitude resulting from errors in estimating the angular rates.

Attitude Error Properties

The attitude error is a multiplicative small angle transformation from the actual frame to the computed frame

$$
\begin{equation*}
\hat{C}_{b}^{\gamma}=\left(\mathcal{I}-\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]\right) C_{b}^{\gamma} \tag{24}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
C_{b}^{\gamma}=\left(\mathcal{I}+\left[\delta \vec{\psi}_{\gamma b}^{\gamma} \times\right]\right) \hat{C}_{b}^{\gamma} \tag{25}
\end{equation*}
$$

Specific Force and Agnular Rates

Similarly we can attempt to estimate the specific force and angular rate by applying correction based on our estimate of the error.

$$
\begin{gather*}
\hat{\vec{f}}_{i b}^{b}=\tilde{\vec{f}}_{i b}^{b}-\Delta \hat{\vec{f}}_{i b}^{b} \tag{26}\\
\hat{\vec{\omega}}_{i b}^{b}=\tilde{\vec{\omega}}_{i b}^{b}-\Delta \hat{\vec{\omega}}_{i b}^{b} \tag{27}
\end{gather*}
$$

where $\hat{\vec{f}}_{i b}^{b}$ and $\hat{\vec{\omega}}_{i b}^{b}$ are the accelerometer and gyroscope estimated calibration values, respectively.

