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Objective

Sequentially estimate on-line the states of a system as it changes over time using obser-
vations that are corrupted with noise.

o Filtering: the time of the estimate coincides with the last measurement.
e Smoothing: the time of the estimate is within the span of the measurements.
e Prediction: the time of the estimate occurs after the last available measurement.

1 Problem

Given State-Space Equations

L = i (€r—1, Wi—1) (M

Zi = hy (&g, Ug) (2)

where @ is (n x 1) state vector at time k, f and hy are possibly non-linear function
f, + " x R™ — R" and hy : R™ x R — R™, respectively, and Wy and ¥ iid
state noise. The state process is Markov chain, t.e., p(Z;|Z1,...,Ex—1) = p(&x|Zr-1) and
the distribution of Zj conditional on the state &j is independent of previous state and
measurement values, i.e., p(Zx|®1.x, Z1.k—1) = p(Zk|Tk)

Objective
Probabilistically estimate @) using previous measurement Zi.;. In other words, construct
the pdf p(Z|21.x).

Optimal MMSE Estimate
B3 - @712} = [ 18— EulPpl@n i)y o)

in other words find the conditional mean

@y = B{&@y| 210} = /fkp(fk\fm)dfk (4)




2 Bayesian Estimation

3 Kalman Filter

Assumptions

e ;. and ¥, are drawn from a Gaussian distribution, uncorrelated have zero mean and
statistically independent.

E{w T }={§”“ :éz )
E{vio7 }{OR’“ Z;: (6)
E{w;, 57} = {o Vi, k (7)

Assumptions

e f;. and hy, are both linear, e.g., the state-space system equations may be written as
Ty = Pp—1 Tp—1 + Wg—1 (8)

Y = Hy & + Uy 9)

where ®;_; is (n X n) transition matrix relating ;1 to &k, Hy is (m x n) matrix provides
noiseless connection between measurement and state vectors.

State-Space Equations

fifkuc—l = ‘I’k—lfﬁk—l\k—l (10)

Prjo1 = Quo1 + ®r_1Pr_11 @i, (11)
*%k\k = '%k|k71 + Ki (2 — Hkék\k—l) (12)
Pip = (I - KpHy)Ppjp—1 (13)

where Ky, is (n x m) Kalman gain, and (2}, — HyZ,—1) is the measurement innovation.

Kalman Gain

Ki =Py HY (HpPpo HY + Ry )7 (14)




Kalman filter data flow

Initial estimate (B¢ and P)

!

Compute Kalman gain
K, =P vl wm, p ul yr;)~ 1
k klk—1Hg (HpPpp_Hy k

8

Project ahead o | ~
= _ = pdate estimate with measurement 2,
Tlk—1 = Pr—1%p_1|k—1 _a 2 Y
! ! klk = Thlk—1 T K (Fp — Hp@p 1)

_ T
Prlk—1=Qe—1 + P 1Pr_1j—1Pp_1

k=k+1

Update error covariance
Prik = Prle—1 — KpHpPrp_q

Sequential Processing

If R is a block matrix, i.e, R = diag(R, R%,...,R"). The R' has dimensions p’ x p.
Then, we can sequentially process the measurements as:

Fori=1,2,...,r

K'L' _ Pifl(Hi)T(HiPifl(Hi)T + Ri)fl (1 5)

By, = T+ K27, - HE))) (16)

P'=(I-KH)P! (17)

where a:c'g‘k = i’k“c_l, P0 = P2|k—1 and H' is p’ x n corresponding to the rows of H

corresponding the measurement being processed.

Observability
The system is observable if the observability matrix

Hk—-n+1)
Hk—-n-2)®k—-n+1)
O(k) = : (18)

H)®(k—1)... 8k —n+1)

where n is the number of states, has a rank of n. The rank of O is a binary indicator and
does not provide a measure of how close the system is to being unobservable, hence, is
prone to numerical ill-conditioning.

A Better Observability Measure
In addition to the computation of the rank of O(k), compute the Singular Value Decom-
position (SVD) of O(k) as
o=U%v"* (19)

and observe the diagonal values of the matrix ¥. Using this approach it is possible to
monitor the variations in the system observability due to changes in system dynamics.
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Remarks

e Kalman filter is optimal under the aforementioned assumptions,
e and it is also an unbiased and minimum variance estimate.

o If the Gaussian assumptions is not true, Kalman filter is biased and not minimum

variance.
e Observability is dynamics dependent.

e The error covariance update may be implemented using the Joseph form which provides

a more stable solution due to the guaranteed symmetry.

Py = (I - Ky Hy) Py (I — K, Hy)" + KR K]

System Model

Z(t) = F(H)&(t) + G(t)w(t)
To obtain the state vector estimate Z(t)

E(E()) = O &(1) = F)F(1)

Solving the above equation over the interval ¢t — 75, ¢
~ t ’ 7\ ~
B(t) = e e FO) g — 1)

where Fi_; is the average of F at times ¢t and t — 7.

System Model Discretization

As shown in the Kalman filter equations the state vector estimate is given hy

Trik—1 = Pr1Zp_1p—1

Therefore,

B =T T4+ Fpog7g

where Fj_; is the average of F at times t and t — 75, and first orde:

used.

Discrete Covariance Matrix Qy

(20)

(23)

(24)

- approximation is

Assuming white noise, small time step, G is constant over the integration period, and

the trapezoidal integration

1
Qi1 ~ 3 [®,_1G1_1Q(tk—1)G]_1 @] 1 + G_1Q(tk—1)Gi_1] T

where

E{w(n)w’ (¢)} = Qn)d(n - ¢)

(29)

(26)
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4 EKF

Linearized System

of (€) Oh(x)
Fk = 81_3' . 5 Hk = a:l_f .
T=Fp, 1 T=Tp|p_1

where

gﬁ gﬁ .. gﬂ %

of(z) o  9f . Oh(Z) ohy Oy
— - 8.’,81 8%2 b} — - 8{131 812
ox ox i

5 Example

First Order Markov Noise

State Equation
- 1
b(t) = _Tb(t) + w(t)

(&

Autocorrelation Function
E{b(t)b(t + 1)} = 0%,e”ITI/ T

where

E{w®)w(t+7)} = Q(t)d(t — )

and T, is the correlation time.

Discrete First Order Markov Noise

State Equation
1
b =€ Te b1 + wr—1

System Covariance Matrix
2
Q=o0p[1—e 7]
Autocorrelation of 1st order Markov

Small Correlation Time T, = 0.01

Ry(7)
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b(t)

Time (sec)

—— Measured Actual —— Estimated

Larger Correlation Time T, = 0.1

b(t)

6 Other Solutions

It
4+, i1
L
+ & + 4
+ + + 4 ¥ HH +
+ ++%—+¥* ++ + ++@ 4 + ﬁfj
P N S K S - VR
0 0.2 0.4 0.6 08 1
Time (sec)
—— Measured Actual —— Estimated

Unscented Kalman Filter (UKF)
Propagates carefully chosen sample points (using unscented transformation) through the
true non-linear system, and therefore captures the posterior mean and covariance accurately

to the second order.
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Particle Filter
A Monte Carlo based method. It allows for a complete representation of the state
distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian

assumptions.
7 References

Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond, by Zhe Chen

.24

.25



http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBgQFjAA&url=http%3A%2F%2Fciteseerx.ist.psu.edu%2Fviewdoc%2Fdownload%3Fdoi%3D10.1.1.107.7415%26rep%3Drep1%26type%3Dpdf&rct=j&q=Bayesian%20Filtering%3A%20From%20Kalman%20Filters%20to%20%20%20%20%20%20%20%20Particle%20Filters%2C%20and%20Beyond&ei=eDSjTfznC-LgiAKnzPWMAw&usg=AFQjCNFwDzEInpHmNuBMIeFnKCp6ZhbSow&cad=rja

	Problem
	Bayesian Estimation
	Kalman Filter
	EKF
	Example
	Other Solutions
	References

