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Objective

Sequentially estimate on-line the states of a system as it changes over time using obser-

vations that are corrupted with noise.

• Filtering: the time of the estimate coincides with the last measurement.

• Smoothing: the time of the estimate is within the span of the measurements.

• Prediction: the time of the estimate occurs after the last available measurement.
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1 Problem

Given State-Space Equations

~xk = fk(~xk−1, ~wk−1) (1)

~zk = hk(~xk, ~vk) (2)

where ~xk is (n × 1) state vector at time k, fk and hk are possibly non-linear function

fk : R
n × R

nw 7→ R
n and hk : R

m × R
nv 7→ R

m, respectively, and ~wk and ~vk i.i.d

state noise. The state process is Markov chain, i.e., p(~xk|~x1, . . . , ~xk−1) = p(~xk|~xk−1) and

the distribution of ~zk conditional on the state ~xk is independent of previous state and

measurement values, i.e., p(~zk|~x1:k, ~z1:k−1) = p(~zk|~xk) .3

Objective

Probabilistically estimate ~xk using previous measurement ~z1:k . In other words, construct

the pdf p(~xk|~z1:k).

Optimal MMSE Estimate

E{‖~xk − ~̂xk‖
2|~z1:k} =

∫

‖~xk − ~̂xk‖
2p(~xk|~z1:k)d~xk (3)

in other words find the conditional mean

~̂xk = E{~xk|~z1:k} =

∫

~xkp(~xk|~z1:k)d~xk (4)
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2 Bayesian Estimation

3 Kalman Filter

Assumptions

• ~wk and ~vk are drawn from a Gaussian distribution, uncorrelated have zero mean and

statistically independent.

E{ ~wk ~w
T
i } =

{

Qk i = k

0 i 6= k
(5)

E{ ~vk~v
T
i } =

{

Rk i = k

0 i 6= k
(6)

E{ ~wk~v
T
i } =

{

0 ∀i, k (7)
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Assumptions

• fk and hk are both linear, e.g., the state-space system equations may be written as

~xk = Φk−1 ~xk−1 + ~wk−1 (8)

~yk = Hk ~xk + ~vk (9)

where Φk−1 is (n× n) transition matrix relating ~xk−1 to ~xk , Hk is (m× n) matrix provides

noiseless connection between measurement and state vectors. .6

State-Space Equations

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (10)

Pk|k−1 = Qk−1 +Φk−1Pk−1|k−1Φ
T
k−1 (11)

~̂xk|k = ~̂xk|k−1 + Kk (~zk −Hk~̂xk|k−1) (12)

Pk|k = (I−KkHk)Pk|k−1 (13)

where Kk is (n×m) Kalman gain, and (~zk −Hk~̂xk|k−1) is the measurement innovation. .7

Kalman Gain

Kk = Pk|k−1H
T
k ( HkPk|k−1H

T
k +Rk )−1 (14)

.8
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Kalman filter data flow
Initial estimate (~̂x0 and P0 )

Compute Kalman gain

Kk = P
k|k−1HT

k
(HkP

k|k−1HT
k

+ Rk)−1

Update estimate with measurement ~zk

~̂x
k|k = ~̂x

k|k−1 + Kk(~zk − Hk~̂x
k|k−1)

Update error covariance

P
k|k = P

k|k−1 − KkHkP
k|k−1

Project ahead

~̂x
k|k−1 = Φk−1~̂x

k−1|k−1

P
k|k−1 = Qk−1 + Φk−1P

k−1|k−1ΦT
k−1

k = k + 1
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Sequential Processing
If R is a block matrix, i.e., R = diag(R1, R2, . . . , Rr). The Ri has dimensions pi × pi.

Then, we can sequentially process the measurements as:

For i = 1, 2, . . . , r
Ki = Pi−1(Hi)T (HiPi−1(Hi)T +Ri)−1 (15)

~̂xi
k|k = ~̂xi

k|k +Ki(~zi
k −Hi~̂xi−1

k|k ) (16)

Pi = (I−KiHi)Pi−1 (17)

where ~̂x0
k|k = ~̂xk|k−1, P0 = P0

k|k−1 and Hi is pi × n corresponding to the rows of H

corresponding the measurement being processed. .10

Observability
The system is observable if the observability matrix

O(k) =











H(k − n+ 1)
H(k − n− 2)Φ(k − n+ 1)

...

H(k)Φ(k − 1) . . .Φ(k − n+ 1)











(18)

where n is the number of states, has a rank of n. The rank of O is a binary indicator and

does not provide a measure of how close the system is to being unobservable, hence, is

prone to numerical ill-conditioning. .11

A Better Observability Measure
In addition to the computation of the rank of O(k), compute the Singular Value Decom-

position (SVD) of O(k) as

O = UΣV ∗ (19)

and observe the diagonal values of the matrix Σ. Using this approach it is possible to

monitor the variations in the system observability due to changes in system dynamics. .12
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Remarks

• Kalman filter is optimal under the aforementioned assumptions,

• and it is also an unbiased and minimum variance estimate.

• If the Gaussian assumptions is not true, Kalman filter is biased and not minimum

variance.

• Observability is dynamics dependent.

• The error covariance update may be implemented using the Joseph form which provides

a more stable solution due to the guaranteed symmetry.

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T
+KkRkK

T
k (20)
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System Model

~̇x(t) = F(t)~x(t) +G(t) ~w(t) (21)

To obtain the state vector estimate ~̂x(t)

E{~̇x(t)} =
∂

∂t
~̂x(t) = F(t)~̂x(t) (22)

Solving the above equation over the interval t− τs, t

~̂x(t) = e(
∫

t

t−τs
F(t′)dt′)~̂x(t− τs) (23)

where Fk−1 is the average of F at times t and t− τs. .14

System Model Discretization
As shown in the Kalman filter equations the state vector estimate is given by

~̂xk|k−1 = Φk−1~̂xk−1|k−1

Therefore,

Φk−1 = eFk−1τs ≈ I+ Fk−1τs (24)

where Fk−1 is the average of F at times t and t − τs, and first order approximation is

used. .15

Discrete Covariance Matrix Qk

Assuming white noise, small time step, G is constant over the integration period, and

the trapezoidal integration

Qk−1 ≈
1

2

[

Φk−1Gk−1Q(tk−1)G
T
k−1Φ

T
k−1 +Gk−1Q(tk−1)G

T
k−1

]

τs (25)

where

E{ ~w(η) ~wT (ζ)} = Q(η)δ(η − ζ) (26)

.16
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4 EKF

Linearized System

Fk =
∂f(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk|k−1

, Hk =
∂h(~x)

∂~x

∣

∣

∣

∣

~x=~̂xk|k−1

(27)

where

∂f(~x)

∂~x
=







∂f1
∂x1

∂f1
∂x2

· · ·
∂f2
∂x1

∂f2
∂x2

· · ·
...

. . .
...






,

∂h(~x)

∂~x
=







∂h1

∂x1

∂h1

∂x2
· · ·

∂h2

∂x1

∂h2

∂x2
· · ·

...
. . .

...






(28)
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5 Example

First Order Markov Noise

State Equation

ḃ(t) = −
1

Tc
b(t) + w(t) (29)

Autocorrelation Function

E{b(t)b(t+ τ)} = σ2
BIe

−|τ |/Tc (30)

where

E{w(t)w(t+ τ)} = Q(t)δ(t− τ) (31)

Q(t) =
2σ2

BI

Tc
(32)

and Tc is the correlation time. .18

Discrete First Order Markov Noise

State Equation

bk = e−
1
Tc

τsbk−1 + wk−1 (33)

System Covariance Matrix

Q = σ2
BI [1− e−

2
Tc

τs ] (34)

.19

Autocorrelation of 1st order Markov .20

Small Correlation Time Tc = 0.01

τ

Rb(τ)
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Larger Correlation Time Tc = 0.1

τ

Rn(τ)
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6 Other Solutions

Unscented Kalman Filter (UKF)
Propagates carefully chosen sample points (using unscented transformation) through the

true non-linear system, and therefore captures the posterior mean and covariance accurately

to the second order. .23
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Particle Filter
A Monte Carlo based method. It allows for a complete representation of the state

distribution function. Unlike EKF and UKF, particle filters do not require the Gaussian

assumptions. .24
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