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NEW MEXICO

Sequentially estimate on-line the states of a system as it changes
over time using observations that are corrupted with noise.

@ Filtering: the time of the estimate coincides with the last
measurement.

@ Smoothing: the time of the estimate is within the span of the
measurements.

@ Prediction: the time of the estimate occurs after the last available
measurement.
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X = F(Rp—1, Wi—1) (1)
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(n x 1) state vector at time k

= fi(Xk—1, Wi_1) (1)

= hy(Xk, Vi) (2)

(m x 1) measurement vector at time k
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Possibly non-linear function,
fi : R" x R — R
Xk Xk—1, Wk—1) (1)

Possibly non-linear function,
hi : R x R™ — R7
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i.i.d state noise

X = F(Xp-1, 1) (1)

Z = hy (X,

t...d measurement noise

Problem
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Given State-Space Equations NEW MEXICO
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X = F(Rp—1, Wi—1) (1)

Zi = hy(Xk, Vi) (2)

The state process is Markov chain, ie.,

p(Xk|X1, ..., Xk_1) = p(Xk|Xk_1) and the distribution of Z, conditional
on the state X, is independent of previous state and measurement
values, i.e., p(2k|)?1:k,2’1:k_1) = p(Ek])’('k)
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NEW MEXICO

Probabilistically estimate X, using previous measurement Z.,. In
other words, construct the pdf p(Xx|Z1.4)-

Problem
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Probabilistically estimate X, using previous measurement Zy.x. In
other words, construct the pdf p(Xx|Z1.4)-

Optimal MMSE Estimate
B(I% - %elPiz) = [ 18- RelPp(Relzide 0

in other words find the conditional mean

Rk = E{Ru| 214} = / %5l B )

Problem
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@ wy and v, are drawn from a Gaussian distribution, uncorrelated
have zero mean and statistically independent.

o1y JQu i=k
B{wiw; } =14, Pk ()

.71y JRk =
E{viv; } = 0 itk (6)

E{w, v} = {o Vi, k

Kalman Filter
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NEW MEXICO

o f, and hy are both linear, e.g., the state-space system equations
may be written as

Xe= ®p_1 X1+ Wi_1 (8)

k= Hi X+ Vi (9)

<!
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NEW MEXICO

o f, and hy are both linear, e.g., the state-space system equations
may be written as

X = Xpo1+ Wy_q (8)

Yk = Hi X+ Vi (9)

(n X n) transition matrix relating X, _, to X
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NEW MEXICO

o f, and hy are both linear, e.g., the state-space system equations
may be written as

Xe= ®p_1 X1+ Wi_1 (8)

k= Xk + Vi (9)

<!

(m X n) matrix provides noiseless connection between
measurement and state vectors

Kalman Filter
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Xiko1 = ®ro1 X4 1jk1 (10)
Prko1 = Quo1 + Puc1Proteo1 Py (11)
Xk = Xugko1 + Ki (Zk — HiXugi1) (12)
Pk = (I = KikHi )P -1 (13)

Kalman Filter
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Xplk—1 = Prk_1Xp_1jk—1 (10)

Pkt = Qo1 + 1P 11®] 4 (11)

Kalman Filter
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Xiko1 = ®ro1 X4 1jk1 (10)
Pkt = Qo1 + 1P 11®] 4 (11)

Kk = Xkjk-1+ K (m (12)

Pk = (I = KikHi )Pl (13)

xP

Measurement innovation

Kalman Filter
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Ki = Pre—1H] ( HiPge—1H] + R )™ (14)

Kalman Filter
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Ki = Pre—1H/ ( @’ )~ (14)

Covariance of the innovation term

Kalman Filter
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Initial estimate ()%O and Po)

<alman Filt
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Initial estimate ()%O and Po)

!

Compute Kalman gain
T T -1
Kie = Prpk—aHg (HePre_aHE +Ry)

<alman Filt
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Initial estimate ()%O and Po)

!

Compute Kalman gain
T T -1
Kie = Prpk—aHg (HePre_aHE +Ry)

Update estimate with measurement Z

Xpelk = Xkjk—1 T Kie(Ze = HpeXpe—q)

<alman Filt
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Initial estimate ()%O and Po)

!

Compute Kalman gain
T T -1
Kie = Prpk—aHg (HePre_aHE +Ry)

Update estimate with measurement Z

Xpelk = Xkjk—1 T Kie(Ze = HpeXpe—q)

Update error covariance
Prik = Prjk—1 — KeHiPrik—a

<alman Filt

March 27, 20



NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

Initial estimate ()%O and Po)

!

Compute Kalman gain
T T -1
Kie = Prpk—aHg (HePre_aHE +Ry)

Project ahead
Xplk—1 = Ph—1Xk—1]k—1 .
Prik—1 = Q1+ Pr_aPr_ajk—1®p_4

Update estimate with measurement Z

Xpelk = Xkjk—1 T Kie(Ze = HpeXpe—q)

k=k+1

Update error covariance
Prik = Prjk—1 — KeHiPrik—a

<alman Filt

March 27, 20



NEW MEXICO TECH
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Initial estimate ()%O and Po)

!

Compute Kalman gain
T T -1
Kie = Prpk—aHg (HePre_aHE +Ry)

Project ahead
Xplk—1 = Ph—1Xk—1]k—1 .
Prik—1 = Q1+ Pr_aPr_ajk—1®p_4

Update estimate with measurement Z

Xpelk = Xkjk—1 T Kie(Ze = HpeXpe—q)

k=k+1

Update error covariance
Prik = Prjk—1 — KeHiPrik—a

<alman Filt
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If R is a block matrix, i.e., R = diag(R',R?,...,R"). The R has
dimensions p’ x p’. Then, we can sequentially process the
measurements as:

Fori=1,2,...,r

Ki — Pifl(Hi)T(HiPifl(Hi)T + Ri)fl (15)
X = X + K (2, - H’)?;(‘*k) (16)
P =(1-KH)P! (17)

a0 % 0_ po iie pi - ;
where Xk = Xklk—1, P = Pk|k_1 and H' is p’ x n corresponding to
the rows of H corresponding the measurement being processed.

Kalman Filter
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The system is observable if the observability matrix

H(k—n+1)
(k) = H(k — n—2):<I>(k— n+1) (18)

H)®(k —1).. . ®(k—n+1)

where n is the number of states, has a rank of n. The rank of O is a
binary indicator and does not provide a measure of how close the
system is to being unobservable, hence, is prone to numerical
ill-conditioning.

Kalman Filter

EE 570: Location and N i March 27, 2



A Better Observability Measure NEW MEXICO
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In addition to the computation of the rank of O(k), compute the
Singular Value Decomposition (SVD) of O(k) as

0= UsV* (19)

and observe the diagonal values of the matrix X. Using this approach
it is possible to monitor the variations in the system observability due
to changes in system dynamics.

Kalman Filter
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o Kalman filter is optimal under the aforementioned assumptions,
@ and it is also an unbiased and minimum variance estimate.

@ If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

@ Observability is dynamics dependent.

@ The error covariance update may be implemented using the
Joseph form which provides a more stable solution due to the
guaranteed symmetry.

Pk = (I — KkH) Prger (1 = KieHi) T + Kk ReK[(20)

Kalman Filter
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X(t) = F(£)%(t) + G(t)w(t) (21)
To obtain the state vector estimate X(t)
E(X(1)} = £ X(1) = F(OX() 22)

Solving the above equation over the interval t — 7, t
S t / 1\ A~
2(t) = elns FV) 3 1) (23)

where Fy_; is the average of F at times t and t — 7s.

Kalman Filter
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As shown in the Kalman filter equations the state vector estimate is
given by

Xik—1 = Pr_1Xk_1jk—1
Therefore,

Kalman Filter
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System Model Discretization
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As shown in the Kalman filter equations the state vector estimate is
given by

Xik—1 = Pr_1Xk_1jk—1
Therefore,

&, = 1T I+ Fq7s (24)

where Fy_; is the average of F at times t and t — 75, and first order
approximation is used.

Kalman Filter
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Assuming white noise, small time step, G is constant over the
integration period, and the trapezoidal integration

1
2

Qi1 % 5 | @16k 1Q(t1)G 1 @)1 + G 1Q(t1)G] | 75 (25)

where

E{w(n)w’(¢)} = Q(n)i(n—¢) (26)

Kalman Filter
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Of(%) oh(X)
k= "% Zups Hi= 5% =Rues 27)
where
on  ofh | Ohy  Ohy
of(x) _ o8 92 .. ohx) _ ok om |
2 S R S N
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First Order Markov Noise

Autocorrelation Function

E{b(t)b(t +7)} = o e/ Te (30)

where
E{w(t)w(t+ 1)} = Q(t)o(t — 7) (31)
Q(t) = 2‘;%’ (32)

and T¢ is the correlation time.

Example
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Discrete First Order Markov Noise NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

State Equation

b= e T by + Wi (33)
System Covariance Matrix
Q= o1 —e 77 (34

v

Example
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Autocorrelation of 1st order Markov NEW MEXICO
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Example
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Small Correlation Time 7. = 0.01
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,;'@,,:‘;, o
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d .

Time (sec)

—— Measured Actual —— Estimated

Example
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Rn(7)

Example
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3
2
Rn(7) 1
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Example
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Propagates carefully chosen sample points (using unscented
transformation) through the true non-linear system, and therefore
captures the posterior mean and covariance accurately to the seconc

order.

Other Solutions
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A Monte Carlo based method. It allows for a complete representation
of the state distribution function. Unlike EKF and UKF, particle filters
do not require the Gaussian assumptions.

Other Solutions
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NEW MEXICO

Bayesian Filtering: From Kalman Filters to Particle Filters, and Beyond
by Zhe Chen
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