EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Earth Surface \& Cravity Models)

Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

$$
\text { February 4, } 2014
$$

Earth Modeling

- The earth can be modeled as an oblate spheroid
- A circular cross section when viewed from the polar axis (top view)
- An elliptical cross-section when viewed perpendicular to the polar axis (side view)

- This ellipsoid (i.e., oblate spheroid) is an approximation of the "geoid"
- The geoid is a gravitational equipotential surface which "best" fits (in the least square sense) the mean sea level

www.nrcan.gc.ca

Earth Modeling

- WGS 84 provides as model of the earth's geoid
- More recently replace by EGM 2008
- The equatorial radius radius $R_{0}=6,378,137.0 \mathrm{~m}$
- The polar radius radius $R_{p}=6,356,752.3142 \mathrm{~m}$
- Eccentricity of the ellipsoid

$$
e=\sqrt{1-\frac{R_{p}^{2}}{R_{0}^{2}}} \approx 0.0818
$$

- Flattening of the ellipsoid

$$
f=\frac{R_{0}-R_{p}}{R_{0}} \approx \frac{1}{298}
$$

Earth Modeling

- We can define a position "near" the earth's surface in terms of latitude, longitude, and height
- Geocentric latitude intersects the center of mass of the earth
- Geodetic latitude (L) is the angle between the normal to the ellipsoid and the equatorial plane

Earth Modeling

- The longitude (λ) is the angle from the x-axis of the ECEF frame to the projection of $\vec{r}_{e b}$ onto the equatorial plane

- The geodetic (or ellipsoidal) height (h) is the distance along the normal from the ellipsoid to the body

Earth Modeling

- Transverse radius of curvature

$$
\begin{equation*}
R_{E}(L)=\frac{R_{0}}{\sqrt{1-e^{2} \sin (L)}} \tag{1}
\end{equation*}
$$

- Meridian radius of curvature

$$
\begin{equation*}
R_{N}(L)=\frac{(1-e) R_{0}}{\left(1-e^{2} \sin ^{2}(L)\right)^{3 / 2}} \tag{2}
\end{equation*}
$$

Earth Modeling

$$
\vec{r}_{e b}^{e}=\left[\begin{array}{c}
x_{e b}^{e} \\
y_{e b}^{e} \\
z_{e b}^{e}
\end{array}\right]=\left[\begin{array}{l}
\left(R_{E}+h_{b}\right) \cos \left(L_{b}\right) \cos \left(\lambda_{b}\right) \\
\left(R_{E}+h_{b}\right) \cos \left(L_{b}\right) \sin \left(\lambda_{b}\right) \\
\left(R_{E}\left(1-e^{2}\right)+h_{b}\right) \sin \left(L_{b}\right)
\end{array}\right]
$$

$$
\left(R_{\mathbf{E}}+h_{\boldsymbol{b}}\right) \cos \left(L_{\boldsymbol{b}}\right) \sin \left(\lambda_{\boldsymbol{b}}\right)
$$

Gravity Models

- Specific force $\left(\vec{f}_{i b}\right)$
- Non-gravitational force per unit mass (unit of acceleration)
- Accelerometers measure specific force
- Specific force sensed when stationary (wrt earth) is referred to as the acceleration due to gravity $\left(\vec{g}_{b}\right)$
- Actually, the reaction to this force
- Gravitational force $\left(\gamma_{i b}\right)$ is result of mass attraction
- The gravitational mass attraction force is different from the acceleration due to gravity

Gravity Models

- Relationship between specific force, inertial acceleration, and gravitational attraction

$$
\begin{equation*}
\vec{f}_{i b} \equiv \vec{a}_{i b}-\vec{\gamma}_{i b} \tag{3}
\end{equation*}
$$

- When stationary on the surface of the earth
- Recall case 1: A fixed point in a rotating frame

$$
\ddot{\vec{r}}_{02}^{0}(t)=\dot{\vec{\omega}}_{01}^{0} \times \vec{r}_{12}^{0}(t)=0 \quad+\vec{\omega}_{01}^{0} \times\left(\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t)\right)
$$

- Consider frame $\{0\}$ to be the $\{i\}$ frame, $\{1\}=\{e\}$, and $\{2\}=\{b\}$ gives

$$
\ddot{\vec{r}}_{i b}^{i}(t)=\vec{\omega}_{i e}^{i} \times\left(\vec{\omega}_{i e}^{i} \times \vec{r}_{e b}^{i}(t)\right)
$$

- coordinatizing in the e-frame

$$
\ddot{\vec{r}}_{i b}^{e}(t)=\vec{\omega}_{i e}^{e} \times\left(\vec{\omega}_{i e}^{e} \times \vec{r}_{e b}^{e}(t)\right)
$$

Gravity Models

- Thus, when stationary on the surface of the earth the acceleration is due to centrifugal force

$$
\vec{a}_{i b}^{e}=\Omega_{i e}^{e} \Omega_{i e}^{e} \vec{r}_{e b}^{e}
$$

- Therefore, the acceleration due to gravity is

$$
\begin{equation*}
\vec{g}_{b}^{e}=-\left.\vec{f}_{i b}\right|_{\vec{v}_{e b}^{e}=0}=-\Omega_{i e}^{e} \Omega_{i e}^{e} \vec{r}_{e b}^{e}+\vec{\gamma}_{i b}^{e} \tag{4}
\end{equation*}
$$

Specific force

$$
\begin{equation*}
\vec{f}_{i b}=\vec{a}_{i b}-\vec{\gamma}_{i b} \tag{5}
\end{equation*}
$$

Gravity Models

- Vector diagram

Gravity Models

- Now, $\vec{\omega}_{i e}^{e}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right] \omega_{i e}$ and hence, $\Omega_{i e}^{e}=\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0\end{array}\right] \omega_{i e}$, and thus

$$
\vec{g}_{b}^{e}=\vec{\gamma}_{i b}^{e}+\omega_{i e}^{2}\left[\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right] \vec{r}_{e b}^{e}
$$

- The WGS 84 model of acceleration due to gravity (on the ellipsoid) can be approximated by (Somigliana model)

$$
\begin{equation*}
g_{0}(L)=9.7803253359 \frac{\left(1+0.001931853 \sin ^{2}(L)\right)}{\sqrt{1-e^{2} \sin ^{2}(L)}} \tag{6}
\end{equation*}
$$

Gravity Models

- On March 17, 2002 NASA launched the Gravity Recovery and Climate Experiment (GRACE) which led to the development of some of the most precise Earth gravity models.

