EE 570: Location and Navigation Introduction to Navigation

Stephen Bruder¹ Aly El-Osery²

¹Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA ²Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

January 14, 2014

• The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.

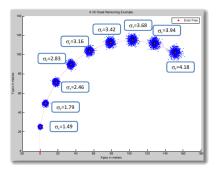
Often described by Position, Velocity, and Attitude (PVA)

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.
 Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means. Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"
 - Position fixing: Directly measuring location
 - Dead Reckoning: measures changes in position and/or attitude

- The process of determining a vehicle's "course" by geometry, astronomy, radio signal, or other means.
 Often described by Position, Velocity, and Attitude (PVA)
- This can be accomplished via "position fixing" or "dead reckoning"
 - Position fixing: Directly measuring location
 - Dead Reckoning: measures changes in position and/or attitude
 - $\bullet\,$ need to initialized and then "integrate" the $\Delta 's$
 - ullet Inertial sensors measure the $\Delta's$ without requiring an external reference

Dead Reckoning: An Example 1


- At each epoch we measure Δx and Δy with noise ($\sigma = 1m$)
- Then add to the prior location

3/8

Dead Reckoning: An Example 1

- At each epoch we measure Δx and Δy with noise ($\sigma = 1m$)
- Then add to the prior location

Dead Reckoning: UGV Examples

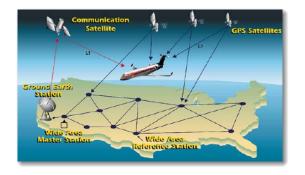
PVA needed in terms of local datum

DARPA grand challenge

Dead Reckoning: UGV Examples

PVA needed in terms of local datum

DARPA grand challenge


SOCOM Robot (EE NMT project)

Dead Reckoning: Aircraft or UAV Examples

Earth Centered Earth Fixed Coordinate System

Dead Reckoning: Spacecraft Examples

Earth Centered Inertial Coordinate System

Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, ...

Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, . . .
- ② How should I describe my location?
 - Position, velocity, and attitude?
 - attitude can be a bit tricky!!


Navigation Concept

- There exists a wide variety of information sources (i.e., sensors)
 - Inertial, Doppler, GPS, radar, compass, camera, odometry, barometric, . . .
- 4 How should I describe my location?
 - Position, velocity, and attitude?
 - attitude can be a bit tricky!!
- When answering the question "where am I?" the wrt must be very clearly defined!!
 - Lead in to the notion of coordinate systems

Navigation Sensors: Past, Current, and Future

Overview Dead Reckoning Navigation Concept Sensors