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1 Kalman Filter

Remarks

• Kalman filter (KF) is optimal under the assumptions that the system is linear and the

noise is uncorrelated

• Under these assumptions KF provides an unbiased and minimum variance estimate.

• If the Gaussian assumptions is not true, Kalman filter is biased and not minimum

variance.

• If the noise is correlated we can augment the states of the system to maintain the the

uncorrelated requirement of the system noise.
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2 State Augmentation

Correlated State Noise

Given a state space system

~̇x1(t) = F1(t)~x1(t) +G1(t)~w1(t)

~y1(t) = H1(t)~x1(t) + ~v(t)

As we have seen the noise ~w1(t) non-white, e.g., correlated Gaussian noise, and as such

may be modeled as

~̇x2(t) = F2(t)~x2(t) +G2(t)~w2(t)

~w1(t) = H2(t)~x2(t)
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Correlated State Noise

Define a new augmented state

~xaug =

(

~x1(t)
~x2(t)

)

(1)

therefore,

~̇xaug =

(

~̇x1(t)

~̇x2(t)

)

=

(

F1(t) G1H2(t)
0 F2

)(

~x1(t)
~x2(t)

)

+

(

0
G2(t)

)

~w2(t) (2)
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and

~y(t) =
(

H1 0
)

(

~x1(t)
~x2(t)

)

+ ~v(t) (3)
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Correlated Measurement Noise

Given a state space system

~̇x1(t) = F1(t)~x1(t) +G1(t)~w(t)

~y1(t) = H1(t)~x1(t) + ~v1(t)

In this case the measurement noise ~v1 may be correlated

~̇x2(t) = F2(t)~x2(t) +G2(t)~v2(t)

~v1(t) = H2(t)~x2(t)
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Correlated Measurement Noise

Define a new augmented state

~xaug =

(

~x1(t)
~x2(t)

)

(4)

therefore,

~̇xaug =

(

~̇x1(t)

~̇x2(t)

)

=

(

F1(t) 0
0 F2

)(

~x1(t)
~x2(t)

)

+

(

G1(t) 0
0 G2(t)

)(

~w(t)
~v2

)

(5)

and

~y(t) =
(

H1 H2

)

(

~x1(t)
~x2(t)

)

(6)
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3 Example

Problem Statement

You are to design a system that estimates the position and velocity of a moving point in

a straight line. You have:

1. an accelerometer corrupted with noise

2. an aiding sensor allowing you to measure absolute position that is also corrupted

with noise.
.7

Specification

• Sampling Rate Fs = 100Hz.

• Accelerometer specs

1. VRW = 1mg/
√
Hz.

2. BI = 7mg with correlation time 6s.

• Position measurement is corrupted with WGN. ∼ N (0, σ2

p), where σp = 2.5m
.8
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Input - Acceleration

True Acceleration and Acceleration with Noise
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Aiding Position Measurement

Absolute position measurment corrupted with noise
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Different Approaches

1. Clean up the noisy input to the system.

2. Use Kalamn filtering techiques with

• A model of the system dyanmics (too ristrictive)

• A model of the error dyanmics and correct the system output in

– open-loop configuration, or

– closed-loop configuration.
.11
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Open-Loop Integration

Aiding Pos Sensor

INS

Filter

Correct INS Output

INS PV + errors

True Pos + errors Aided errors - INS errors

Inertial

erros

est.

+

+

−

+
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Closed-Loop Integration

If error estimates are fedback to correct the INS mechanization, a reset of the state

estimates becomes necessary.

Aiding Pos Sensor

INS INS Correction

Filter

Correct INS Output

+

−
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Kalman filter data flow
Initial estimate (~̂x0 and P0)

Compute Kalman gain

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k +Rk)

−1

Update estimate with measurement ~zk
~̂xk|k = ~̂xk|k−1 +Kk(~zk −Hk~̂xk|k−1)

Update error covariance

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T
+KkRkK

T
k

Project ahead

~̂xk|k−1 = Φk−1~̂xk−1|k−1

Pk|k−1 = Qk−1 +Φk−1Pk−1|k−1Φ
T
k−1

k = k + 1

.14

Covariance Matrices

• State noise covariance matrix (continuous)

E{~w(t) ~̂wT (τ)} = Q(t)δ(t− τ)
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• State noise covariance matrix (discrete)

E{~wk ~̂w
T
i } =

{

Qk i = k

0 i 6= k

• Measurement noise covariance matrix

E{~vk~̂vTi } =

{

Rk i = k

0 i 6= k

• Error covariance matrix

Pk = E{(~xk − ~̂xk)(~xk − ~̂xk)
T } = E{~ek~̂eTk }

.15

System modeling

The position, velocity and acceleration may be modeled using the following kinematic

model.

ṗ(t) = v(t)

v̇(t) = a(t)
(7)

where a(t) is the input. .16

Measurement Model

Assuming that the accelerometer sensor measurement may be modeled as

ã(t) = a(t) + b(t) + wa(t) (8)

and the bias is Markov, therefore

ḃ(t) = − 1

Tc
b(t) + wb(t) (9)

where both wa(t) and wb(t) are WGN. In addition we have the position measurment from

which we can derive a delta position

δp(t) = p(t)− p̂(t) (10)

where p̂ is the derived position by double integrating the measured acceleration. .17

Error Mechanization

Define the position and velocity error terms as

δṗ(t) = ṗ(t)− ˙̂p(t)

= v(t)− v̂(t)

= δv(t)

(11)

and

δv̇(t) = v̇(t)− ˙̂v(t)

= a(t)− â(t)

= −b(t)− wa(t)

(12)

where b(t) is modeled as shown in Eq. 9 .18
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First Order Markov Noise

State Equation

ḃ(t) = − 1

Tc
b(t) + wb(t) (13)

Autocorrelation Function

E{b(t)b(t+ τ)} = σ2e−|τ |/Tc (14)

where

E{wb(t)wb(t+ τ)} = Qb(t)δ(t− τ) (15)

Qb(t) =
2σ2

BI

Tc
(16)

and Tc is the correlation time and σBI is the bias instability. .19

State Space Formulation

~̇x(t) =





δṗ(t)
δv̇(t)

ḃ(t)



 =





0 1 0
0 0 −1
0 0 − 1

Tc









δp(t)
δv(t)
b(t)



+





0 0 0
0 −1 0
0 0 1









0
wa(t)
wb(t)





= F (t)~x(t) +G(t)~w(t)

(17)

.20

Covariance Matrics

• The continuous state noise covariance matrix Q(t) is

Q(t) =





0 0 0
0 V RW 2 0

0 0
2σ2

BI

Tc



 (18)

make sure that the V RW and σBI are converted to have SI units.

• The measurement noise covariance matrix is R = σ2

p
.21

Discretization

Now we are ready to start the implementation but first we have to discretize the system.

~x(k + 1) = Φ(k)~x(k) + ~wd (19)

where

Φ(k) ≈ I + Fdt (20)

with the measurement equation

y(k) = H~x+ wp(k) = δp(k) + wp(k) (21)

where H = [1 0 0]. The discrete Qd is approximated as

Qk−1 ≈ 1

2
[Φk−1G(tk−1)Q(tk−1)G

T (tk−1))Φ
T
k−1

+

G(tk−1)Q(tk−1)G
T (tk−1)]dt

(22)

.22
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Discrete First Order Markov Noise

State Equation

bk = e−
1
Tc

dtbk−1 + wbd,k−1 (23)

System Covariance Matrix

Qbd = σ2

BI [1− e−
2
Tc

dt] (24)

where wbd is the discrete noise for the bias.

You should use Eqs. 23 and 24 to overwrite their values in Φ and Qd since they don’t

need to be approximated. .23

Computed Position and Velocity

Using only the acceleration measurement and an integration approach to compute the

velocity, then integrate again to get position.

Position
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Approach 1 — Filtered input Filtered Accel Measurement
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Approach 1 — Filtered input Position and Velocity

Position
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Approach 1 — Filtered input Position and Velocity Errors

Position Error
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Approach 2 — Open-Loop Compensation Position and Velocity

Open-loop Correction

Best estimate = INS out (pos & vel) + KF est error (pos & vel)
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Position
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Approach 2 — Open-Loop Compensation Position and Velocity Errors

Position Error
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Approach 2 — Open-Loop Compensation Pos Error & Bias Estimate
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Position Error
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Approach 3 — Closed-Loop Compensation

Closed-loop Correction

Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias) Use best estimate

on next iteration of INS Accel estimate = accel meas - est bias Reset state estimates before

next call to KF
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Approach 3 — Closed-Loop Compensation Position and Velocity Errors

Position Error

-80

-60

-40

-20

0

20

40

0 10 20 30 40 50

m
Time (sec)

Error in Meas Pos
Error in Computed Pos Error

Error in Estimated Pos

Velocity Error

-12

-10

-8

-6

-4

-2

0

2

0 10 20 30 40 50

m
/s

Time (sec)

Error in Estimated Vel
Error in Computed Vel

.32

Approach 3 — Closed-Loop Compensation Pos Error & Bias Estimate

Position Error
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