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NEW MEXICO

o Kalman filter (KF) is optimal under the assumptions that the
system is linear and the noise is uncorrelated

@ Under these assumptions KF provides an unbiased and minimum
variance estimate.

@ If the Gaussian assumptions is not true, Kalman filter is biased
and not minimum variance.

@ If the noise is correlated we can augment the states of the system
to maintain the the uncorrelated requirement of the system noise.

Kalman Filter
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Correlated State Noise NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

Given a state space system
s1(t) = Fu()%(t) + Gu(t)wa(t)

n(t) = Hi(t)x(t) + v(t)

As we have seen the noise wi(t) non-white, e.g., correlated Gaussian
noise, and as such may be modeled as

%(t) = Fa(t)%(t) + Ga(t)Wo(t)

V_I71(t) = Hz(t))?z(t)

State Augmentation
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Correlated State Noise

Define a new augmented state

s = (1) (1)

therefore,

).?aug_<§lgg>_(ﬁét) WEO) (20 + (o) 0 @

and

Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location an: April 3, 2014 4/33



Correlated Measurement Noise

Given a state space system
%1(t) = Fu(t)%u(t) + Gu(t)w(t)

n(t) = Hi(t)x(t) + v(t)

In this case the measurement noise v; may be correlated
%(t) = Fa(t)%a(t) + Ga(t)va(t)

\71(1‘) = HQ(i‘))?g(f)

State Augmentation
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Correlated Measurement Noise

Define a new augmented state

s = (1) (@)

therefore,
o= (3) - (40 )G+ (58 al) () o
and
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NEW MEXICO

You are to design a system that estimates the position and velocity of
a moving point in a straight line. You have:

@ an accelerometer corrupted with noise

© an aiding sensor allowing you to measure absolute position that
is also corrupted with noise.

Example
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NEW MEXICO

@ Sampling Rate Fs = 100Hz.
@ Accelerometer specs

@ VRW = 1mg/VHz.

@ Bl = 7mg with correlation time 6s.

@ Position measurement is corrupted with WGN. ~ ./\/'(0,0,2,), where
op = 2.5m

Example
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Input - Acceleration NEW MEXICO
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True Acceleration and Acceleration with Noise
2
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Aiding Position Measurement NEW MEXICO
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Absolute position measurment

- : . zoomed version
corrupted with noise
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Different Approaches NEW MEXICO
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@ Clean up the noisy input to the system.
@ Use Kalamn filtering techiques with

@ A model of the system dyanmics (too ristrictive)

@ A model of the error dyanmics and correct the system output in
@ open-loop configuration, or
@ closed-loop configuration.

Example
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Open-Loop Integration NEW MEXICO
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True Pos + errors Aided errors - INS errors
+
Aiding Pos Sensor O Filter
+ Inertial

INS () erros

_.I_
est.

INS PV + errors

Correct INS Output

Example
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Closed-Loop Integration NEW MEXICO
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If error estimates are fedback to correct the INS mechanization, a
reset of the state estimates becomes necessary.

+
Aiding Pos Sensor ) Filter

INS INS Correction

Correct INS Output

Example
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W MEXICO TECH
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Initial estimate [;?0 and Po)

¥

Compute Kalman gain

Kk = Pur—1H{ (HkPrge—1HY + Re) ! ]\

Update estimate with measurement Zj
Xipk = Xijk—1 + Ki(Zx — HiXpj—1)

Update error covariance J

Project ahead

Xkjk—1 = Pro1Xk-1jk-1 ;
Prik—1 = Qu-1 + ®r1Pr11®)_y

Puse = (I = KiHi) Pii—1 (1 = KicHi) T + K RiK |

Location and



NEW MEXICO TECH

@ State noise covariance matrix (continuous)
E{w(t)w’ (1)} = Q(t)(t — )
@ State noise covariance matrix (discrete)

L oa Qe i=k
E{ kWiT} = )
0 i#k
@ Measurement noise covariance matrix
S R i=k
E{VkViT} = .
0 i#k

@ Error covariance matrix

P = E{(% — %) (% — %) T} = E{&c&] }

Example
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NEW MEXICO

The position, velocity and acceleration may be modeled using the
following kinematic model.

where a(t) is the input.

Example

16 / 33



NEW MEXICO TECH

Assuming that the accelerometer sensor measurement may be
modeled as

a(t) = a(t) + b(t) + wa(t) (8)

and the bias is Markov, therefore

1

b(t) = —=b(t) + ws(t) (9)

where both w,(t) and wy(t) are WGN. In addition we have the
position measurment from which we can derive a delta position

5p(t) = p(t) — B(t) (10)

where p is the derived position by double integrating the measured
acceleration.

Example




Error Mechanization

Define the position and velocity error terms as

p(t) = p(t) — p(t
= v(t) — 0(t) (11)
=Jv(t)

and

ov(t) = v(t) — U(t)
a(t) — a(t) (12)
= —b(t) — wa(t)

where b(t) is modeled as shown in Eq. 9

Example
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First Order Markov Noise

b() = —-b() + ws() (13)

Autocorrelation Function

E{b(t)b(t + 1)} = o2~ |71/ T (14)
where
E{wp(t)ws(t + 7)} = Qp(£)5(t —7) (15)
2
Q(t) = @ (16)

and T is the correlation time and opg, is the bias instability.

Example
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State Space Formulation

5p(t) 01 0 5p(t) 0 0 0 0
x(t)=[ov(t) | =[0 0 —1 ] [sv(t)|+ [0 =1 O] [ wa(t)
b(t) 00 —+/ \ b(t) 0 0 1/ \wy(t)
= F(t)x(t) + G(t)w(t)
(17)

Example
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NEW MEXICO

@ The continuous state noise covariance matrix Q(t) is

0 0 0
Q(t)= |0 VRW?2 0 (18)
o o b

make sure that the VRW and op; are converted to have Sl units.

2

@ The measurement noise covariance matrix is R = op

Example
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NEW MEXICO

Now we are ready to start the implementation but first we have to
discretize the system.

R(k +1) = d(k)R(k) + Wy (19)

where
®(k) =~ 7 + Fdt (20)

with the measurement equation
y(k) = HX + wp(k) = dp(k) + wp(k) (21)

where H =[1 0 0]. The discrete Qq is approximated as

Q1 [0k 16(t 1)Qtk1)6 T (e 1))O]y +
G(tk-1)Q(t—1)G T (t—1)]dt

Example
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Discrete First Order Markov Noise NEW MEXICO TECH
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State Equation

—idt
b = e T by_1 + Wpd k-1 (23) |
System Covariance Matrix
Qoa = o}t — & 7<% 24)

where wpy is the discrete noise for the bias.
You should use Egs. 23 and 24 to overwrite their values in ® and Qq
since they don’t need to be approximated.

Example




Computed Position and Velocity NEW MEXICO
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Using only the acceleration measurement and an integration approach
to compute the velocity, then integrate again to get position.

Position Velocity
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Computed Pos —— Computed Vel ———
250 True Pos — True Vel —
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Example
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Approach 1 — Filtered input

Filtered Accel Measurement NEW MEXICO TECH

SCIENCE + ENGINEERING « RESEARCH UNIVERSITY

MeasI Accel
15 Filtered Accel =----- —
True Accel —

Example
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Approach 1 — Filtered input

Position and Velocity

W MEXICO TECH
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Position Velocity
300 T T 15 T T
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mple
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Approach 1 — Filtered input

Position and Velocity Errors W MEXICO TECH
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Position Error Velocity Error
% l l l l 2 | T | |
Error in Filtered Pos =-=---- Error in Filtered Vel =-=----
0 0 L Error in Computed Vel ——— —

-50 5 b

-100 4
£ £
-150 E s L
-200 8 b
-250 -10
-300 ' ' ' : 12
0 10 20 30 40 50 0 10 20 30 40 50
Time (sec) Time (sec)

Example
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Approach 2 — Open-Loop Compensation
Position and Velocity

Open-loop Correction

NEW MEXICO TECH
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Best estimate = INS out (pos & vel) + KF est error (pos & vel)

m
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Example
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Approach 2 — Open-Loop Compensation

Position and Velocity Errors
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Position Error
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Example
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Approach 2 — Open-Loop Compensation

Pos Error & Bias Estimate EW MEXICO TECH
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Position Error Bias
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Example
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Approach 3 — Closed-Loop Compensation
Position and Velocity
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Closed-loop Correction

Best estimate = INS out (pos,vel, & bias) + KF est error (pos, vel & bias)
Use best estimate on next iteration of INS

Accel estimate = accel meas - est bias

Reset state estimates before next call to KF

Position Velocity
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Example
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Approach 3 — Closed-Loop Compensation

Position and Velocity Errors W MEXICO TECH
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Position Error Velocity Error
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Example
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Approach 3 — Closed-Loop Compensation

Pos Error & Bias Estimate NEW MEXICO TECH
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Position Error Bias
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Example
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