EE 570: Location and Navigation Navigation Mathematics: Kinematics (Rotation Matrices)

Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

$$
\text { January 28, } 2014
$$

Notation

- The notation \vec{x}_{2}^{1} (a vector) describes the vector \vec{x}_{2} in terms (i.e. with respect to) of the " 1 " frame \Rightarrow Resolved or coordinatized in the " 1 " frame
- The notation C_{2}^{1} (a rotation matrix) describes the " 2 " coordinate frame (i.e., the \vec{x}_{2}, \vec{y}_{2}, and \vec{z}_{2} basis vectors) in terms of (i.e., with respect to) the " 1 " frame
- Right Hand coordinate frames will be used in this course

- The rotation matrix C_{2}^{1} describes the orientation of frame $\{2\}$ relative to frame $\{1\}$
- $C_{2}^{1}=\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]$

Deriving C_{2}^{1}

- The vectors \vec{x}_{2}, \vec{y}_{2}, and \vec{z}_{2} described in coordinate system $\{1\}$ is

$$
\vec{x}_{\mathbf{2}}^{\mathbf{1}}=\left[\begin{array}{c}
<\vec{x}_{\mathbf{2}}, \vec{x}_{\mathbf{1}}> \\
<\vec{x}_{\mathbf{2}}, \vec{y}_{\mathbf{1}}> \\
<\vec{x}_{\mathbf{2}}, \vec{z}_{\mathbf{1}}>
\end{array}\right], \quad \quad \vec{y}_{\mathbf{2}}^{\mathbf{1}}=\left[\begin{array}{c}
<\vec{y}_{\mathbf{2}}, \vec{x}_{\mathbf{1}}> \\
<\vec{y}_{\mathbf{2}}, \vec{y}_{\mathbf{1}}> \\
<\vec{y}_{\mathbf{2}}, \vec{z}_{\mathbf{1}}>
\end{array}\right], \quad \vec{z}_{\mathbf{2}}^{\mathbf{1}}=\left[\begin{array}{c}
<\vec{z}_{\mathbf{2}}, \vec{x}_{\mathbf{1}}> \\
<\vec{z}_{\mathbf{2}}, \vec{y}_{\mathbf{1}}> \\
<\vec{z}_{\mathbf{2}}, \vec{z}_{\mathbf{1}}>
\end{array}\right]
$$

respectively

- Therefore,

$$
C_{2}^{1}=\left[\begin{array}{ccc}
<\vec{x}_{2}, \vec{x}_{1}>, & <\vec{y}_{2}, \vec{x}_{1}>, & <\vec{z}_{2}, \vec{x}_{1}> \tag{1}\\
<\vec{x}_{2}, \vec{y}_{1}>, & <\vec{y}_{2}, \vec{y}_{1}>, & <\vec{z}_{2}, \vec{y}_{1}> \\
<\vec{x}_{2}, \vec{z}_{1}>, & <\vec{y}_{2}, \vec{z}_{1}>, & <\vec{z}_{2}, \vec{z}_{1}>
\end{array}\right]
$$

- By describing frame " 1 " in terms of frame " 2 " in order to construct C_{1}^{2}, it can be shown that
(1) i.e., sitting on frame $\{2\}$ looking frame $\{1\}$

$$
\begin{equation*}
C_{1}^{2}=\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1} \tag{2}
\end{equation*}
$$

(2) Note that these rotational matrices are orthonormal, i.e., $C^{-1}=C^{T}$ and $|C|= \pm 1$

- For right-hand coordinate systems $|C|=+1$

Rotation Matrices as transformation

- The point P can be described in the coordinate system frame $\{1\}$ as

$$
\vec{p}^{1}=p_{x_{1}} \vec{x}_{1}+p_{y_{1}} \vec{y}_{1}+p_{z_{1}} \vec{z}_{1}
$$

- The point P can also be described in the coordinate system frame $\{2\}$ as

$$
\vec{p}^{2}=p_{x_{2}} \vec{x}_{2}+p_{y_{2}} \vec{y}_{2}+p_{z_{2}} \vec{z}_{2}
$$

Rotation Matrices as transformation (cont.)

- Since \vec{p}^{1} and \vec{p}^{2} are representation of the same point but wrt different coordinate systems, then

$$
\begin{aligned}
p_{x_{1}} & =<\vec{p}^{1}, \vec{x}_{1}> \\
& =<\vec{p}^{2}, \vec{x}_{1}> \\
& =<p_{x_{2}} \vec{x}_{2}+p_{y_{2}} \vec{y}_{2}+p_{z_{2}} \vec{z}_{2}, \vec{x}_{1}> \\
& =p_{x_{2}}<\vec{x}_{2}, \vec{x}_{1}>+p_{y_{2}}<\vec{y}_{2}, \vec{x}_{1}>+p_{z_{2}}<\vec{z}_{2}, \vec{x}_{1}>
\end{aligned}
$$

- Similarly,

$$
\begin{aligned}
p_{y_{1}} & =p_{x_{2}}<\vec{x}_{2}, \overrightarrow{y_{1}}>+p_{y_{2}}<\vec{y}_{2}, \overrightarrow{y_{1}}>+p_{z_{2}}<\vec{z}_{2}, \overrightarrow{y_{1}}> \\
p_{z_{1}} & =p_{x_{2}}<\vec{x}_{2}, \vec{z}_{1}>+p_{y_{2}}<\vec{y}_{2}, \vec{z}_{1}>+p_{z_{2}}<\vec{z}_{2}, \vec{z}_{1}>
\end{aligned}
$$

Rotation Matrices as transformation (cont.)

- Putting it all together

$$
\left[\begin{array}{l}
p_{x_{1}} \\
p_{y_{1}} \\
p_{z_{1}}
\end{array}\right]=\left[\begin{array}{ccc}
<\vec{x}_{2}, \vec{x}_{1}>, & <\vec{y}_{2}, \vec{x}_{1}>, & <\vec{z}_{2}, \vec{x}_{1}> \\
<\vec{x}_{2}, \vec{y}_{1}>, & <\vec{y}_{2}, \vec{y}_{1}>, & <\vec{z}_{2}, \vec{y}_{1}> \\
<\vec{x}_{2}, \vec{z}_{1}>, & <\vec{y}_{2}, \vec{z}_{1}>, & <\vec{z}_{2}, \vec{z}_{1}>
\end{array}\right]\left[\begin{array}{l}
p_{x_{2}} \\
p_{y_{2}} \\
p_{z_{2}}
\end{array}\right] \Rightarrow \vec{p}^{\mathbf{1}}=C_{2}^{1} \vec{p}^{\mathbf{2}}
$$

which matches Eq. 1

- It can be shown that

$$
\vec{p}^{2}=C_{1}^{2} \vec{p}^{1}=\left[C_{2}^{1}\right]^{T} \vec{p}^{1}
$$

- Consequently,

$$
\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1}=C_{1}^{2}
$$

Rotation matrices can be thought of in three distinct ways:
(1) It describes the orientation of one coordinate frame wrt another coordinate frame
(2) It represents a coordinate transformation relating the coordinates of a point (e.g., P) in two different frames of reference
(3) It is an operator taking a vector \vec{p} and rotating it into a new vector $R \vec{p}$, both in the same system

