Lecture

Navigation Mathematics: Kinematics (Rotation Matrices: Fixed vs Relative)

EE 570: Location and Navigation

Lecture Notes Update on January 28, 2014
Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University Aly El-Osery, Electrical Engineering Dept., New Mexico Tech
\qquad

1 Rotation Matrix

Rotation Matrix

- The rotation matrix C is a 3×3 matrix requiring 9 parameters to describe and orientation.
- It can be shown that any orientation can by uniquely described using only 3-parameters.
- Some examples of 3-parameter descriptions include:
- Fixed axis rotations
- Relative (or Euler) axis rotations, and
- angle-axis rotation

Rotation Matrix

- An example
- Rotate frame $\{2\}$ by ψ about the common z-axis.

$$
\begin{aligned}
& \vec{x}_{2}=\cos (\psi) \vec{x}_{1}+\sin (\psi) \vec{y}_{1}+0 \vec{z}_{1} \\
& \vec{y}_{2}=-\sin (\psi) \vec{x}_{1}+\cos (\psi) \vec{y}_{1}+0 \vec{z}_{1} \\
& C_{2}^{1}=\left[\begin{array}{ccc}
\cos (\psi) & -\sin (\psi) & 0 \\
\sin (\psi) & \cos (\psi) & 0 \\
0 & 0 & 1
\end{array}\right] \\
& z_{1} z_{2}
\end{aligned}
$$

Note

Could have rotated the frame $\{1\}$ by $-\psi$ to get $C_{1}^{2}=R_{(\vec{z},-\psi)}$

Rotation Matrix

Alternatively,

$$
\begin{aligned}
&<\vec{x}_{2}, \vec{x}_{1}>=\vec{x}_{2} \cdot \vec{x}_{1}=\left|\vec{x}_{2}\right|\left|\vec{x}_{1}\right| \cos (\psi)=\cos (\psi) \\
&<\vec{x}_{2}, \vec{y}_{1}>=\cos \left(90^{\circ}-\psi\right)=\sin (\psi) \\
&<\vec{x}_{2}, \vec{z}_{1}>=\cos (90)=0 \\
&<\vec{y}_{2}, \vec{x}_{1}>=\cos \left(90^{\circ}-\psi\right) \\
&<\vec{y}_{2}, \vec{y}_{1}>=\cos (\psi) \\
&<\vec{y}_{2}, \vec{z}_{1}>=\cos (90)=0 \\
&<\vec{z}_{2}, \vec{x}_{1}>=\cos (90) \\
&<\vec{z}_{2}, \vec{y}_{1}>=\cos (90) \\
&<\vec{z}_{2}, \vec{z}_{1}>=\cos (0)=1
\end{aligned}
$$

<

Rotation Matrix

- Recall that

$$
\begin{aligned}
C_{2}^{1} & =\left[\begin{array}{ccc}
<\vec{x}_{2}, \vec{x}_{1}>, & <\vec{y}_{2}, \vec{x}_{1}>, & <\vec{z}_{2}, \vec{x}_{1}> \\
<\vec{x}_{2}, \vec{y}_{1}>, & <\vec{y}_{2}, \vec{y}_{1}>, & <\vec{z}_{2}, \vec{y}_{1}> \\
<\vec{x}_{2}, \vec{z}_{1}>, & <\vec{y}_{2}, \vec{z}_{1}>, & <\vec{z}_{2}, \vec{z}_{1}>
\end{array}\right] \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]=R_{(\vec{z}, \psi)}
\end{aligned}
$$

- Similarly,

$$
R_{(\vec{x}, \phi)}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \quad R_{(\vec{y}, \theta)}=\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]
$$

Rotations Don't Commute

Consider

$$
\begin{aligned}
& R_{(\vec{y}, \theta)} R_{(\vec{z}, \psi)}= {\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] } \\
& {\left[\begin{array}{ccc}
\cos \theta \cos \psi & -\cos \theta \sin \psi & \sin \theta \\
\sin \psi & \cos \psi & 0 \\
-\sin \theta \cos \psi & \sin \theta \sin \psi & \cos \theta
\end{array}\right] } \\
& R_{(\vec{z}, \psi)} R_{(\vec{y}, \theta)}=\left[\begin{array}{ccc}
\cos \psi \cos \theta & -\sin \psi & \cos \psi \sin \theta \\
\sin \psi \cos \theta & \cos \psi & \sin \psi \sin \theta \\
-\sin \theta & 0 & \cos \theta
\end{array}\right] \neq R_{(\vec{y}, \theta)} R_{(\vec{z}, \psi)}
\end{aligned}
$$

2 Fixed vs Relative Rotations

Fixe vs Relative Rotations

- Fixed axis rotation
- conduct rotations about the original (i.e., fixed) $x-, y$-, or z-axis
- Relative axis rotation
- Conduct rotations about the current location (i.e., relative) of x-, y-, or z-axis
* Sometimes referred to as Euler rotations

An example

- Step 1: Rotate about the z-axis by ψ, then
- Step 2: Rotate about the y-axis by θ, then
- Step 3: Rotate about the x-axis by ϕ.

Rotation Matrix

Relative Axis Rotation Rotate about z_{1}

Relative Axis Rotation Rotate about y_{2}

Relative Axis Rotation Rotate about x_{3}

Fixed Axis Rotation Rotate about x_{1}

Fixed Axis Rotation

Fixed Axis Rotation
Rotate about z_{1}

Fixed Axis Rotation
Rotate about y_{1}

3 Relative Axis Rotation

Relative Axis Rotations

- It is intuitive to think in terms of the orientation of one coordinate wrt another coordinate frame
- In frame $\{3\}$ frame $\{4\}$ is described as $C_{4}^{3}=\left[\vec{x}_{4}^{3}, \vec{y}_{4}^{3}, \vec{z}_{4}^{3}\right]=R_{(\vec{x}, \phi)}$
- In frame $\{2\}$ frame $\{3\}$ is described as $C_{3}^{2}=\left[\vec{x}_{3}^{2}, \vec{y}_{3}^{2}, \vec{z}_{3}^{2}\right]=R_{(\vec{y}, \theta)}$
* Therefore, in frame $\{2\}$, frame $\{4\}$ is $C_{4}^{2}=C_{3}^{2} C_{4}^{3}$
- In frame $\{1\}$ frame $\{2\}$ is described as $C_{2}^{1}=\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{(\vec{z}, \psi)}$ * Therefore, in frame $\{1\}$, frame $\{4\}$ is $C_{4}^{1}=C_{2}^{1} C_{3}^{2} C_{4}^{3}$
\qquad

Euler Angles

- In the case of relative axis: Yaw (ψ), Pitch (θ), Roll (ϕ) rotation sequence

$$
\begin{align*}
C_{4}^{1} & =C_{2}^{1} C_{3}^{2} C_{4}^{3} \\
& =R_{(\vec{z}, \psi)} R_{(\vec{y}, \theta)} R_{(\vec{x}, \phi)} \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \tag{1}\\
& =\left[\right]
\end{align*}
$$

4 Fixed Axis Rotation

Fixed Axis Rotations

- It is intuitive to think in terms of taking a vector \vec{p} and rotating it into a new vector $R \vec{p}$ both in the same coordinate frame
- The first "yaw" rotation, "rotates" the frame $\{1\}$ basis vector to become the frame $\{2\}$ basis vector $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{(\vec{z}, \psi)}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=C_{2}^{1}$
- The second "pitch" rotation, "rotates" the frame $\{2\}$ basis vector to become the frame $\{3\}$ basis vector $\left[\vec{x}_{3}^{1}, \vec{y}{ }_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{(\vec{y}, \theta)}\left[\vec{x}_{2}^{1}, \vec{y}{ }_{2}^{1}, \vec{z}_{2}^{1}\right]=C_{3}^{1}$
- The third "roll" rotation, "rotates" the frame $\{3\}$ basis vector to become the frame $\{4\}$ basis vector $\left[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}\right]=R_{(\vec{x}, \phi)}\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=C_{4}^{1}$

Fixed Axis Rotation

- In the case of fixed axis: Yaw (ψ), Pitch (θ), Roll (ϕ) rotation sequence

$$
\begin{align*}
C_{4}^{1} & =R_{(\vec{x}, \phi)} R_{(\vec{y}, \theta)} R_{(\vec{z}, \psi)} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \tag{2}\\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & -c_{\theta} s_{\psi} & s_{\theta} \\
c_{\psi} s_{\theta} s_{\phi}+c_{\phi} s_{\psi} & c_{\phi} c_{\psi}-s_{\theta} s_{\phi} s_{\psi} & -c_{\theta} s_{\phi} \\
s_{\phi} s_{\psi}-c_{\phi} c_{\psi} s_{\theta} & c_{\psi} s_{\phi}+c_{\phi} s_{\theta} s_{\psi} & c_{\theta} c_{\phi}
\end{array}\right]
\end{align*}
$$

5 Summary

Fixed vs Relative Rotations

- Fixed Axis Rotations
- Multiply on the LEFT
- $R_{\text {final }}=R_{n} \ldots R_{2} R_{1}$

Fixed Axis Rotation

$R_{\text {resultant }}=R_{\text {fixed }} R_{\text {original }}$

- Relative (Euler) Axis Rotations
- Multiply on the RIGHT
$-R_{\text {final }}=R_{1} R_{2} \ldots R_{n}$

Relative Axis Rotation

$R_{\text {resultant }}=R_{\text {original }} R_{\text {relative }}$

You can mix the two types of rotations

