EE 570: Location and Navigation

 Navigation Mathematics: Kinematics (Angle-Axis Rotation)

 Navigation Mathematics: Kinematics (Angle-Axis Rotation)}

Stephen Bruder ${ }^{1} \quad$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

January 28, 2014

- Recall: 3-parameter descriptions of rotation:
- Fixed axis rotations,
- Relative (or Euler) axis rotations, and
- Angle-axis rotations
- for both fixed and relative axis format order/sequence is critical

An example

- What is the

description of the

ECEF frame resolved in the ECI
frame? (i.e. C_{e}^{i})
$C_{e}^{i}=R_{\left(\vec{z}, \theta_{e}\right)}=\left[\begin{array}{ccc}\cos \theta_{e} & -\sin \theta_{e} & 0 \\ \sin \theta_{e} & \cos \theta_{e} & 0 \\ 0 & 0 & 1\end{array}\right]$ Vernal Equinox
What is θ_{e} ?

An example

- What is the

description of the

ECEF frame resolved in the ECI
frame? (i.e. C_{e}^{i})
$C_{e}^{i}=R_{\left(\vec{z}, \theta_{e}\right)}=\left[\begin{array}{ccc}\cos \theta_{e} & -\sin \theta_{e} & 0 \\ \sin \theta_{e} & \cos \theta_{e} & 0 \\ 0 & 0 & 1\end{array}\right]$

- What is θ_{e} ?

- $\theta_{e}=\omega_{i e}\left(t-t_{0}\right)$

An example

- What is the nav frame resolved in the ECEF frame (i.e. C_{n}^{e})

- The angle-axis format does not have the rotation in sequence issue
- FACT: Any rotation matrix C_{b}^{a} can be realized via rotating by an angle θ about an appropriately chosen axis of rotation (\vec{k} say).
- Rotation matrix formed by rotating about some unit vector \vec{k} by an angle of θ
- Firstly, note that \vec{k} need only stipulate a direction, and thus a unit-length vector is sufficient.
- This rotation matrix can be derived by rotating one of the principal axis (x, y, or z) onto the vector \vec{k}, then performing a rotation of θ, and finally
 undoing the original changes

Angle-Axis

- By, noting that

Angle-Axis

- By, noting that

$$
\begin{aligned}
\sin \alpha & =\frac{k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \\
\cos \alpha & =\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \\
\sin \beta & =\sqrt{k_{1}^{2}+k_{2}^{2}} \\
\cos \beta & =k_{3}
\end{aligned}
$$

Angle-Axis

- By, noting that

$$
\begin{aligned}
\sin \alpha & =\frac{k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \\
\cos \alpha & =\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \\
\sin \beta & =\sqrt{k_{1}^{2}+k_{2}^{2}} \\
\cos \beta & =k_{3}
\end{aligned}
$$

- we can show that

$$
R_{(k, \theta)}=\left[\begin{array}{ccc}
k_{1}^{2} V_{\theta}+c_{\theta} & k_{1} k_{2} v_{\theta}-k_{3} s_{\theta} & k_{1} k_{3} v_{\theta}+k_{2} s_{\theta} \tag{1}\\
k_{1} k_{2} v_{\theta}+k_{3} s_{\theta} & k_{2}^{2} v_{\theta}+c_{\theta} & k_{2} k_{3} v_{\theta}-k_{1} s_{\theta} \\
k_{1} k_{3} v_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} v_{\theta}+k_{1} s_{\theta} & k_{3}^{2} v_{\theta}+c_{\theta}
\end{array}\right]
$$

where $V_{\theta} \equiv 1-\cos \theta$.

Angle-Axis Another Approach

- Alternatively, the angle-axis rotation matrix is related to its equivalent angle-axis pair by

$$
\begin{equation*}
R_{(\vec{k}, \theta(t))}=e^{\mathfrak{\xi} \theta(t)} \tag{2}
\end{equation*}
$$

where

skew-symmetric

$$
\mathfrak{K}=\left[\begin{array}{ccc}
0 & -k_{3} & k_{2} \tag{3}\\
k_{3} & 0 & -k_{1} \\
-k_{2} & k_{1} & 0
\end{array}\right]
$$

is the matrix version of the rotation axis vector $\vec{k}=\left[\begin{array}{lll}k_{1} & k_{2} & k_{3}\end{array}\right]^{T}$. Note: $\mathfrak{K}^{\top}=-\mathfrak{K}$.

Rodrigues Formula

- Using Taylor expansion

$$
R_{(\vec{k}, \theta(t))}=e^{\mathfrak{K} \theta(t)}=\mathcal{I}+\mathfrak{K} \theta(t)+\frac{\mathfrak{K}^{2} \theta^{2}(t)}{2!}+\frac{\mathfrak{K}^{3} \theta^{3}(t)}{3!}+\cdots
$$

- After a bit of manipulation we can show that

Rodrigues Formula

$$
\begin{equation*}
R_{(\vec{k}, \theta(t))}=\mathcal{I}+\sin (\theta(t)) \mathfrak{K}+[1-\cos (\theta(t))] \mathfrak{K}^{2} \tag{4}
\end{equation*}
$$

- Multiplying out the rhs of the above equation gives us the same results as in Eq. 1
- Recall that

$$
R_{(k, \theta)}=\left[\begin{array}{ccc}
k_{1}^{2} v_{\theta}+c_{\theta} & k_{1} k_{2} v_{\theta}-k_{3} s_{\theta} & k_{1} k_{3} v_{\theta}+k_{2} s_{\theta} \\
k_{1} k_{2} v_{\theta}+k_{3} s_{\theta} & k_{2}^{2} v_{\theta}+c_{\theta} & k_{2} k_{3} v_{\theta}-k_{1} s_{\theta} \\
k_{1} k_{3} v_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} v_{\theta}+k_{1} s_{\theta} & k_{3}^{2} v_{\theta}+c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- What is the angle-axis pair (\vec{k}, θ) needed to realize this rotation matrix
- Recall that

$$
R_{(k, \theta)}=\left[\begin{array}{ccc}
k_{1}^{2} v_{\theta}+c_{\theta} & k_{1} k_{2} v_{\theta}-k_{3} s_{\theta} & k_{1} k_{3} v_{\theta}+k_{2} s_{\theta} \\
k_{1} k_{2} v_{\theta}+k_{3} s_{\theta} & k_{2}^{2} v_{\theta}+c_{\theta} & k_{2} k_{3} v_{\theta}-k_{1} s_{\theta} \\
k_{1} k_{3} v_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} v_{\theta}+k_{1} s_{\theta} & k_{3}^{2} v_{\theta}+c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]
$$

- What is the angle-axis pair (\vec{k}, θ) needed to realize this rotation matrix
- Look at the trace of the matrix $\left(V_{\theta} \equiv 1-\cos \theta\right)$

$$
\begin{align*}
& \operatorname{Tr}(R)=\left[k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right](1-\cos \theta)+3 \cos \theta=1+2 \cos \theta \\
& \theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(R)-1}{2}\right)=\cos ^{-1}\left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right) \tag{5}
\end{align*}
$$

- Also, looking for the axis of rotation

$$
\begin{aligned}
& r_{32}-r_{23}=2 k_{1} s_{\theta} \\
& r_{13}-r_{31}=2 k_{2} s_{\theta} \\
& r_{21}-r_{12}=2 k_{3} s_{\theta}
\end{aligned}
$$

- Also, looking for the axis of rotation

$$
\begin{aligned}
& r_{32}-r_{23}=2 k_{1} s_{\theta} \\
& r_{13}-r_{31}=2 k_{2} s_{\theta} \\
& r_{21}-r_{12}=2 k_{3} s_{\theta}
\end{aligned}
$$

- Therefore,

$$
\vec{k}=\frac{1}{2 s_{\theta}}\left[\begin{array}{l}
r_{32}-r_{23} \tag{6}\\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
$$

- A satellite orbiting the earth can be made to point it's telescope at a desired star by performing
(1) Rotate about it's x-axis by -30°, then
(2) Rotate about it's new z-axis by 50°, then finally
(3) Rotate about it's initial y-axis by 40°.

- A satellite orbiting the earth can be made to point it's telescope at a desired star by performing
(1) Rotate about it's x-axis by -30°, then
(2) Rotate about it's new z-axis by 50°, then finally
(3) Rotate about it's initial y-axis by 40°.

- what is its final orientation wrt the starting orientation?

$$
\begin{aligned}
C_{\text {final }}^{\text {start }} & =R_{\left(\overrightarrow{\boldsymbol{y}}, \mathbf{4 0 ^ { \circ })}\right.} R_{\left(\overrightarrow{\boldsymbol{x}},-\mathbf{3 0 ^ { \circ }}\right)} R_{\left(\overrightarrow{\mathbf{z}}, \mathbf{5 0 ^ { \circ })}\right.} \\
& =\left[\begin{array}{ccc}
0.766044 & 0 & 0.642788 \\
0 & 1 & 0 \\
-0.642788 & 0 & 0.766044
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.866025 & 0.5 \\
0 & -0.5 & 0.866025
\end{array}\right]\left[\begin{array}{cc}
0.642788 & -0.766044 \\
0.766044 & 0.642788 \\
0 & 0 \\
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.246202 & -0.793412 & 0.55667 \\
0.663414 & 0.663414 & 0.5 \\
-0.706588 & 0.246202 & 0.246202
\end{array}\right]
\end{aligned}
$$

An Example (cont.)

- In order to save enerty it is desirable to perform this change in orientation with only one rotation - How?
- In order to save enerty it is desirable to perform this change in orientation with only one rotation - How?
- Perform an angle-axis rotation

$$
\begin{gathered}
\theta=\cos ^{-1}\left(\frac{\operatorname{Tr}(R)-1}{2}\right)=76.5^{\circ} \\
\vec{k}=\frac{1}{2 s_{\theta}}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]=\left[\begin{array}{c}
-0.130495 \\
0.649529 \\
0.749055
\end{array}\right]
\end{gathered}
$$

