EE 570: Location and Navigation Navigation Mathematics: Kinematics (Quaternions)

Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA
February 10, 2014

Singularity Problem

Euler angles and angle-axis rotation consist of only three elements and they are not unique, e.g., there are orientations that are represented by different Euler angles and angle-axis rotation.

Quaternion

Quaternions are 4-element representation of the rotation vectors. The additional element makes quaternions unique. Since quaternions are only 4 elements, they have the lowest dimentionality possible for a globally nonsignualar attitude representation.

Quaternions

- Given a rotation vector defined as

$$
\vec{K}=\theta \vec{k}
$$

where \vec{k} and θ are Euler axis and angle, respectively, a quaternion is defined as

$$
\bar{q}=\left[\begin{array}{c}
q_{s} \\
\vec{q}
\end{array}\right]=\left[\begin{array}{l}
q_{s} \\
q_{x} \\
q_{y} \\
q_{z}
\end{array}\right]=\left[\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
\vec{k} \sin \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

Quaternion Properties

- Quaternion inverse

$$
\bar{q}^{-1}=\left[\begin{array}{c}
q_{s} \\
-q_{x} \\
-q_{y} \\
-q_{z}
\end{array}\right]
$$

- Vector transformation Define

$$
\breve{q}=\left[\begin{array}{l}
0 \\
\vec{q}
\end{array}\right]
$$

then transforming a vector \vec{v}^{p} defined in the p-frame may be transformed to the i-frame using

$$
\breve{v}^{i}=\bar{q} \otimes \breve{v}^{p} \otimes \bar{q}^{-1}
$$

Quaternion Multiply

- Quaternion multiply

$$
\bar{r}=\bar{q} \otimes \bar{p}=[\bar{q} \otimes] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}+\vec{q} \times \vec{p}
\end{array}\right]
$$

where

$$
[\bar{q} \otimes]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & -q_{z} & q_{y} \\
q_{y} & q_{z} & q_{s} & -q_{x} \\
q_{z} & -q_{y} & q_{x} & q_{s}
\end{array}\right]
$$

Quaternion Multiply

- Quaternion multiply (corresponds to reverse order DCM)

$$
\bar{r}=\bar{q} \circledast \bar{p}=[\bar{q} \circledast] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}-\vec{q} \times \vec{p}
\end{array}\right]
$$

$$
\bar{q} \otimes \bar{p}=\bar{p} \circledast \bar{q}
$$

where

$$
[\bar{q} \circledast]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & q_{z} & -q_{y} \\
q_{y} & -q_{z} & q_{s} & q_{x} \\
q_{z} & q_{y} & -q_{x} & q_{s}
\end{array}\right]
$$

$$
\begin{aligned}
\mathcal{T}(\bar{q}) & =\left(q_{s}^{2}-|\vec{q}|^{2}\right) \mathcal{I}+2 q_{s}[\vec{q} \times]+2 \vec{q} \vec{q}^{T}= \\
& =\left[\begin{array}{ccc}
q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2} & 2\left(q_{x} q_{y}-q_{s} q_{z}\right) & 2\left(q_{x} q_{z}+q_{s} q_{y}\right) \\
2\left(q_{x} q_{y}+q_{s} q_{z}\right) & q_{s}^{2}-q_{x}^{2}+q_{y}^{2}-q_{z}^{2} & 2\left(q_{y} q_{z}-q_{s} q_{x}\right) \\
2\left(q_{x} q_{z}-q_{s} q_{y}\right) & 2\left(q_{y} q_{z}+q_{s} q_{x}\right) & q_{s}^{2}-q_{x}^{2}-q_{y}^{2}+q_{z}^{2}
\end{array}\right]
\end{aligned}
$$

The above DCM describes the orientation of the object frame as seen by the reference frame, e.g., $\left(C_{b}^{i}\right)$

$$
\begin{aligned}
\mathcal{T}^{T}(\bar{q}) & =\left(q_{s}^{2}-|\vec{q}|^{2}\right) \mathcal{I}-2 q_{s}[\vec{q} \times]+2 \vec{q} \vec{q}^{T}= \\
& =\left[\begin{array}{ccc}
q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2} & 2\left(q_{x} q_{y}+q_{s} q_{z}\right) & 2\left(q_{x} q_{z}-q_{s} q_{y}\right) \\
2\left(q_{x} q_{y}-q_{s} q_{z}\right) & q_{s}^{2}-q_{x}^{2}+q_{y}^{2}-q_{z}^{2} & 2\left(q_{y} q_{z}+q_{s} q_{x}\right) \\
2\left(q_{x} q_{z}+q_{s} q_{y}\right) & 2\left(q_{y} q_{z}-q_{s} q_{x}\right) & q_{s}^{2}-q_{x}^{2}-q_{y}^{2}+q_{z}^{2}
\end{array}\right]
\end{aligned}
$$

The above DCM describes the orientation of the reference frame as seen by the object frame, e.g., $\left(C_{i}^{b}\right)$

Quaternion Identities

$$
\begin{gathered}
{\left[\bar{q}^{-1} \otimes\right]=[\bar{q} \otimes]^{-1}=[\bar{q} \otimes]^{T}} \\
{\left[\bar{q}^{-1} \circledast\right]=[\bar{q} \circledast]^{-1}=[\bar{q} \circledast]^{T}} \\
{[\bar{q} \otimes]=e^{\frac{1}{2}[\breve{k} \otimes]}=\cos (\theta / 2) \mathcal{I}+\frac{1}{2}[\breve{k} \otimes] \frac{\sin (\theta / 2)}{\theta / 2}} \\
{[\bar{q} \circledast]=e^{\frac{1}{2}[\breve{k} \circledast]}=\cos (\theta / 2) \mathcal{I}+\frac{1}{2}[\breve{k} \circledast] \frac{\sin (\theta / 2)}{\theta / 2}} \\
{[\bar{q} \otimes][\bar{q} \circledast]^{-1}=[\bar{q} \circledast]^{-1}[\bar{q} \otimes]=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathcal{T}(\bar{q})
\end{array}\right]}
\end{gathered}
$$

Quaternion Identities

$$
\begin{gathered}
\bar{q} \otimes \bar{p} \otimes \bar{r}=(\bar{q} \otimes \bar{p}) \otimes \bar{r}=\bar{q} \otimes(\bar{p} \otimes \bar{r}) \\
\bar{q} \circledast \bar{p} \circledast \bar{r}=(\bar{q} \circledast \bar{p}) \circledast \bar{r}=\bar{q} \circledast(\bar{p} \circledast \bar{r}) \\
(\bar{q} \circledast \bar{p}) \otimes \bar{r} \neq \bar{q} \circledast(\bar{p} \otimes \bar{r}) \\
(\bar{q} \otimes \bar{p}) \circledast \bar{r} \neq \bar{q} \otimes(\bar{p} \circledast \bar{r})
\end{gathered}
$$

