# Lecture

# Navigation Mathematics: Kinematics (Translation)

EE 570: Location and Navigation

Lecture Notes Update on February 2, 2014

Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University Aly El-Osery, Electrical Engineering Dept., New Mexico Tech

.2

Translation

•  $\vec{r}_{\alpha\beta}$  is the vector from the origin of  $\{\alpha\}$  to the origin of  $\{\beta\}$ .



Translation

• Resolve, i.e., coordinatize,  $\vec{r}_{\alpha\beta}$  wrt frame  $\{\beta\}$ .

The two vectors have the same length

#### Translation (more than two coordinate frames)

- Consider the three coordinate systems  $\{a\}$ ,  $\{b\}$ , and  $\{c\}$ 
  - Origin from  $\{a\}$  to  $\{b\}$  and vice-versa, i.e.,  $\vec{r}_{ab} = -\vec{r}_{ba}$
  - Knowing the relationship between frames  $\{a\}$ ,  $\{b\}$ , and  $\{c\}$ , i.e.,  $\vec{r}_{ab}$ ,  $\vec{r}_{bc}$ ,  $\vec{r}_{ac}$ ,  $C^a_b$ ,  $C_c^b$ , and  $C_c^a$
  - Determine the location of the point p
  - Describe in what frame,? i.e.,  $\vec{p}^a$  or  $\vec{p}^b$  or  $\vec{p}^c$ .



#### Translation (more than two coordinate frames)

- ullet Determine the location of the point p
  - Origin from  $\{a\}$  to point p



.5

- $\vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$  In what frame?
- $\begin{array}{l} \bullet \ \, \vec{p}^{\,a}_{\,ap} = \vec{r}^{\,a}_{\,ab} + \vec{p}^{\,a}_{\,bp} \\ \bullet \ \, \vec{p}^{\,a} \equiv \vec{p}^{\,a}_{\,bp} \end{array}$

#### Translation (more than two coordinate frames)

- Determine the location of the point *p* 
  - Origin from  $\{b\}$  to point p
  - $\bullet \ \vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$   $\bullet \ \text{In what frame?}$

  - $$\begin{split} \bullet & \ \vec{p}_{ap}^{\ b} = \vec{r}_{ab}^{\ b} + \vec{p}_{bp}^{\ b} \\ \bullet & \ \vec{p}^{\ b} \equiv \vec{p}_{bp}^{\ b} = \vec{p}_{ap}^{\ b} \vec{r}_{ab}^{\ b} \\ \bullet & \ \vec{p}_{bp}^{\ b} = C_a^b \vec{p}_{ap}^{\ a} \end{split}$$



### Translation (more than two coordinate frames)

- ullet Determine the location of the point p
  - Origin from  $\{c\}$  to point p
  - $\vec{p}_{ap} = \vec{r}_{ac} + \vec{p}_{cp}$  In what frame?

  - $\vec{p}_{ap}^{c} = \vec{r}_{ab}^{c} + \vec{p}_{bp}^{c}$   $\vec{p}_{cp}^{c} = \vec{p}_{cp}^{c} = \vec{p}_{ap}^{c} \vec{r}_{ac}^{c}$   $\vec{p}_{cp}^{a} = C_{c}^{c} \vec{p}_{cp}^{c}$   $\vec{p}_{cp}^{b} = C_{c}^{b} \vec{p}_{cp}^{c}$



#### Example

• 
$$C_b^a = R_{(\vec{z},50^\circ)}$$

• 
$$C_c^b = R_{(\vec{n}-30)}$$

$$\bullet$$
  $C_a^a = C_i^a C_a^b$ 

• 
$$\vec{r}_{ba}^b = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^T$$



#### Example

$$\begin{split} \vec{r}_{ac}^{a} &= \vec{r}_{ab}^{a} + \vec{r}_{bc}^{a} \\ &= \vec{r}_{ab}^{a} + C_{b}^{a} \vec{r}_{bc}^{b} \\ &= \begin{bmatrix} 0 \\ 0 \\ 2 \end{bmatrix} + R_{(\vec{z},50^{\circ})} \begin{bmatrix} 3 \\ 0 \\ 0 \\ 2 \end{bmatrix} + \begin{bmatrix} \cos 50^{\circ} & -\sin 50^{\circ} & 0 \\ \sin 50^{\circ} & \cos 50^{\circ} & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix} \\ &= \begin{bmatrix} 1.93 \\ 2.30 \\ 2.00 \end{bmatrix} \end{split}$$

## Example



