EE 570: Location and Navigation Navigation Mathematics: Kinematics (Translation)

Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

February 2, 2014

Translation

- $\vec{r}_{\alpha \beta}$ is the vector from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

Translation

- Resolve, i.e., coordinatize, $\vec{r}_{\alpha \beta}$ wrt frame $\{\beta\}$.

The two vectors have the same length

Translation (more than two coordinate frames)

- Consider the three coordinate systems $\{a\},\{b\}$, and $\{c\}$
- Origin from $\{a\}$ to $\{b\}$ and vice-versa, i.e., $\vec{r}_{a b}=-\vec{r}_{b a}$
- Knowing the relationship between frames $\{a\},\{b\}$, and $\{c\}$, i.e., $\vec{r}_{a b}, \vec{r}_{b c}, \vec{r}_{a c}, C_{b}^{a}, C_{c}^{b}$, and C_{c}^{a}
- Determine the location of the point p
- Describe in what frame,? i.e., \vec{p}^{a} or \vec{p}^{b} or \vec{p}^{c}.

- Determine the location of the point p
- Origin from $\{a\}$ to point p
- $\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p}$
- In what frame?
- $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$
- $\vec{p}^{a} \equiv \vec{p}_{b p}^{a}$

- Determine the location of the point p
- Origin from $\{b\}$ to point p
- $\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p}$
- In what frame?
- $\vec{p}_{a p}^{b}=\vec{r}_{a b}^{b}+\vec{p}_{b p}^{b}$
- $\vec{p}^{b} \equiv \vec{p}_{b p}^{b}=$
$\vec{p}_{a p}^{b}-\vec{r}_{a b}^{b}$
- $\vec{p}_{b p}^{b}=C_{a}^{b} \vec{p}_{a p}^{a}$

- Determine the location of the point p
- Origin from $\{c\}$ to point p
- $\vec{p}_{a p}=\vec{r}_{a c}+\vec{p}_{c p}$
- In what frame?
- $\vec{p}_{a p}^{c}=\vec{r}_{a b}^{c}+\vec{p}_{b p}^{c}$
- $\vec{p}^{c} \equiv \vec{p}_{c p}^{c}=$
$\vec{p}_{a p}^{c}-\vec{r}_{a c}^{c}$
- $\vec{p}_{c p}^{a}=C_{c}^{a} \vec{p}_{c p}^{c}$
- $\vec{p}_{c p}^{b}=C_{c}^{b} \vec{p}_{c p}^{c}$

Example

- $C_{b}^{a}=R_{\left(\vec{z}, 50^{\circ}\right)}$
- $C_{c}^{b}=R_{\left(\vec{y},-30^{\circ}\right)}$
- $C_{c}^{a}=C_{b}^{a} C_{c}^{b}$
- $\vec{r}_{a b}^{a}=\left[\begin{array}{lll}0 & 0 & 2\end{array}\right]^{T}$
- $\vec{r}_{b c}^{b}=\left[\begin{array}{lll}3 & 0 & 0\end{array}\right]^{T}$
- find $\vec{r}_{a c}^{a}$
- find $\vec{r}_{c a}^{c}$

Example

$$
\begin{aligned}
\vec{r}_{a c}^{a} & =\vec{r}_{a b}^{a}+\vec{r}_{b c}^{a} \\
& =\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b} \\
& =\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+R_{\left(\vec{z}, 50^{\circ}\right)}\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{ccc}
\cos 50^{\circ} & -\sin 50^{\circ} & 0 \\
\sin 50^{\circ} & \cos 50^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1.93 \\
2.30 \\
2.00
\end{array}\right]
\end{aligned}
$$

Example

$$
\begin{aligned}
\vec{r}_{c a}^{c} & =-\vec{r}_{a c}^{c} \\
& =-C_{a}^{c} \vec{r}_{a c}^{a} \\
& =-\left(C_{c}^{a}\right)^{T} \vec{r}_{a c}^{a} \\
& =-\left(R_{\left(\vec{z}, 50^{\circ}\right)}, R_{\left(\vec{y},-30^{\circ}\right)}\right)^{T}\left[\begin{array}{c}
1.93 \\
2.30 \\
2.00
\end{array}\right] \\
& =\left[\begin{array}{c}
-3.59 \\
0 \\
-0.232
\end{array}\right]
\end{aligned}
$$

