EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Translation)

Stephen Bruder¹ Aly El-Osery²

¹Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

²Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA

February 2, 2014

Translation

• $\vec{r}_{\alpha\beta}$ is the vector from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

Translation

• Resolve, i.e., coordinatize, $\vec{r}_{\alpha\beta}$ wrt frame $\{\beta\}$.

The two vectors have the same length

- Consider the three coordinate systems $\{a\}$, $\{b\}$, and $\{c\}$
 - ullet Origin from $\{a\}$ to $\{b\}$ and vice-versa, i.e., $ec{r}_{ab}=-ec{r}_{ba}$
 - Knowing the relationship between frames $\{a\}$, $\{b\}$, and $\{c\}$, i.e., \vec{r}_{ab} , \vec{r}_{bc} , \vec{r}_{ac} , C_b^a , C_c^b , and C_c^a
 - ullet Determine the location of the point p
 - Describe in what frame,? i.e., \vec{p}^a or \vec{p}^b or \vec{p}^c .

- Determine the location of the point p
 - Origin from {a} to point p

- In what frame?
- $\bullet \ \vec{p}_{ap}^{a} = \vec{r}_{ab}^{a} + \vec{p}_{bp}^{a}$
- $\bullet \ \vec{p}^{\,a} \equiv \vec{p}^{\,a}_{\,bp}$

- Determine the location of the point p
 - Origin from {b} to point p
- $\bullet \ \vec{p}_{ap} = \vec{r}_{ab} + \vec{p}_{bp}$
- In what frame?

$$\vec{p}_{ap}^{b} = \vec{r}_{ab}^{b} + \vec{p}_{bp}^{b}$$

$$\vec{p}^{b} \equiv \vec{p}^{b}_{bp} = \vec{p}^{b}_{ap} - \vec{r}^{b}_{ab}$$

$$\bullet \vec{p}_{bp}^{b} = C_a^b \vec{p}_{ap}^{a}$$

- Determine the location of the point p
 - Origin from $\{c\}$ to point p

$$\bullet \ \vec{p}_{ap} = \vec{r}_{ac} + \vec{p}_{cp}$$

- In what frame?
- $\bullet \ \vec{p}_{ap}^{c} = \vec{r}_{ab}^{c} + \vec{p}_{bp}^{c}$

$$\vec{p}^c \equiv \vec{p}^c_{cp} = \vec{p}^c_{ap} - \vec{r}^c_{ac}$$

- $\bullet \vec{p}_{cp}^a = C_c^a \vec{p}_{cp}^c$
- $\bullet \vec{p}_{cp}^b = C_c^b \vec{p}_{cp}^c$

Example

•
$$C_b^a = R_{(\vec{z},50^\circ)}$$

•
$$C_c^b = R_{(\vec{y}, -30^\circ)}$$

•
$$C_c^a = C_b^a C_c^b$$

$$\vec{r}_{ab}^a = \begin{bmatrix} 0 & 0 & 2 \end{bmatrix}^T$$

$$\vec{r}_{bc}^{b} = \begin{bmatrix} 3 & 0 & 0 \end{bmatrix}^{T}$$

- find \vec{r}_{ac}^a
- find \vec{r}_{ca}^c

Example

Example

