EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Angular Velocity)

Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

January 29, 2014

- Since the relative and fixed axis rotations must be performed in a particular order, their derivatives are somewhat challenging
- The angle-axis format, however, is readily differentiable as we can encode the 3 parameters by

$$
\vec{K} \equiv \vec{k}(t) \theta(t)=\left[\begin{array}{l}
K_{1}(t) \tag{1}\\
K_{2}(t) \\
K_{3}(t)
\end{array}\right]
$$

where $\theta=\|\vec{K}\|$

- Hence,

$$
\frac{d}{d t} \vec{K}(t)=\left[\begin{array}{l}
\dot{K}_{1}(t) \\
\dot{K}_{2}(t) \\
\dot{K}_{3}(t)
\end{array}\right]
$$

Angular Velocity

- For a sufficiently "small" time interval we can often consider the axis of rotation to be \approx constant (i.e., $\vec{K}(t)=\vec{k}$)

$$
\begin{aligned}
\frac{d}{d t} \vec{k}(t) & =\frac{d}{d t}(\vec{k} \theta(t)) \\
& =\vec{k} \dot{\theta}(t)
\end{aligned}
$$

- This is referred to as the angular velocity $(\vec{\omega}(t))$ or the so called "body reference" angular velocity

Angular Velocity

$$
\begin{equation*}
\vec{\omega}(t) \equiv \vec{k} \dot{\theta}(t) \tag{2}
\end{equation*}
$$

- This definition of the angular velocity can also be related back to the rotation matrix. Recalling that

$$
C_{b}^{a}(t)=R_{\left(\vec{k}_{a b}^{a}, \theta(t)\right)}=e^{\mathfrak{K}_{a b}^{a} \theta(t)}
$$

- Hence,

$$
\begin{aligned}
& \frac{d}{d t} C_{b}^{a}(t)=\frac{d}{d t} e^{\mathfrak{K}_{a b}^{a} \theta(t)} \\
&=\frac{\partial C_{b}^{a}}{\partial \theta} \frac{d \theta}{d t} \\
&=\mathfrak{K}_{a b}^{a} e^{\mathfrak{K}_{a b}^{a} \theta(t)} \dot{\theta}(t) \\
&=\left(\mathfrak{K}_{a b}^{a} \dot{\theta}(t)\right) C_{b}^{a}(t) \\
& \Rightarrow \dot{C}_{b}^{a}(t)\left[C_{b}^{a}(t)\right]^{T}=\mathfrak{K}_{a b}^{a} \dot{\theta}(t)
\end{aligned}
$$

- Notice that

$$
\begin{aligned}
\mathfrak{K}_{a b}^{a} \dot{\theta}(t) & =\operatorname{Skew}\left[k_{a b}^{a}\right] \dot{\theta}(t) \\
& =\operatorname{Skew}\left[k_{a b}^{a} \dot{\theta}(t)\right] \\
& =\operatorname{Skew}\left[\vec{\omega}_{a b}^{a}\right]=\Omega_{a b}^{a}
\end{aligned}
$$

- Therefore,

$$
\dot{C}_{b}^{a}(t)\left[C_{b}^{a}(t)\right]^{T}=\Omega_{a b}^{a}
$$

- or

$$
\begin{equation*}
\dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a} \tag{3}
\end{equation*}
$$

$$
\mathfrak{K} \vec{a}=\left[\begin{array}{ccc}
0 & -k_{3} & k_{2} \\
k_{3} & 0 & -k_{1} \\
-k_{2} & k_{1} & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
k_{2} a_{3}-k_{3} a_{2} \\
k_{3} a_{1}-k_{1} a_{3} \\
k_{1} a_{2}-k_{2} a_{1}
\end{array}\right]=\vec{k} \times \vec{a}
$$

- Hence, we can think of the skew-symmetric matrix as

$$
\mathfrak{K}=[\vec{k} \times]
$$

- or, in the case of angular velocity

$$
\Omega=[\vec{\omega} \times]
$$

$$
\begin{aligned}
C \Omega C^{T} \vec{b} & =C\left[\vec{\omega} \times\left(C^{T} \vec{b}\right)\right] \\
& =C \vec{\omega} \times\left(C C^{\top} \vec{b}\right) \\
& =C \vec{\omega} \times \vec{b} \\
& =[C \vec{\omega} \times] \vec{b}
\end{aligned}
$$

- Therefore,

$$
C[\vec{\omega} \times] C^{T}=[C \vec{\omega} \times]
$$

- or

$$
C[\vec{\omega} \times]=[C \vec{\omega} \times] C
$$

$$
\begin{aligned}
\dot{C}_{b}^{a} & =\Omega_{a b}^{a} C_{b}^{a} \\
& =\left[\vec{\omega}_{a b}^{a} \times\right] C_{b}^{a} \\
& =\left[C_{b}^{a} \vec{\omega}_{a b}^{b} \times\right] C_{b}^{a} \\
& =C_{b}^{a}\left[\vec{\omega}_{a b}^{b} \times\right] \\
& =C_{b}^{a} \Omega_{a b}^{b}
\end{aligned}
$$

$$
\begin{equation*}
\dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b} \tag{4}
\end{equation*}
$$

Summary

Angular velocity can be

- described as a vector
- the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $\vec{\omega}_{a b}^{c}$
- $\vec{\omega}_{a b}=-\vec{\omega}_{b a}$
- described as a skew-symmetric matrix $\Omega_{a b}^{c}=\left[\vec{\omega}_{a b}^{c} \times\right]$
- the skew-symmetric matrix is equivalent to the vector cross product
- when pre-multiplying another vector
- related to the differential of the rotation matrix

$$
\begin{aligned}
& \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b} \\
& \dot{C}_{b}^{a}=-\Omega_{b a}^{a} C_{b}^{a}=-C_{b}^{a} \Omega_{b a}^{b}
\end{aligned}
$$

- Consider, $C_{2}^{0}=C_{1}^{0} C_{2}^{1}$

$$
\begin{aligned}
\frac{d}{d t} C_{2}^{0} & =\frac{d}{d t} C_{1}^{0} C_{2}^{1} \\
\dot{C}_{2}^{0} & =\dot{C}_{1}^{0} C_{2}^{1}+C_{1}^{0} \dot{C}_{2}^{1} \\
\Omega_{02}^{0} C_{2}^{0} & =\Omega_{01}^{0} C_{1}^{0} C_{2}^{1}+C_{1}^{0} C_{2}^{1} \Omega_{12}^{2} \\
\Omega_{02}^{0} & =\Omega_{01}^{0} C_{2}^{0}\left[C_{2}^{0}\right]^{T}+C_{2}^{0} \Omega_{12}^{2}\left[C_{2}^{0}\right]^{T} \\
{\left[\vec{\omega}_{02}^{0} \times\right] } & =\left[\vec{\omega}_{01}^{0} \times\right]+\left[C_{2}^{0} \vec{\omega}_{12}^{2} \times\right] \\
\vec{\omega}_{02}^{0} & =\vec{\omega}_{01}^{0}+\vec{\omega}_{12}^{0}
\end{aligned}
$$

