EE 570: Location and Navigation

Navigation Mathematics: Kinematics (Linear Velocity)

Stephen Bruder ${ }^{1} \quad$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

$$
\text { January 30, } 2014
$$

- Consider the motion of a fixed point (origin of frame $\{2\}$) in a rotating frame (frame $\{1\}$) as seen from an inertial (frame $\{0\}$)
- Frame 0 and 1 have the same origin
- Frame 1 rotates (about a unit vector \vec{k}) wrt frame 0
- The origin of frame 2 is fixed wrt frame 1
- Position:

$$
\begin{aligned}
\vec{r}_{02}^{0}(t) & =\vec{r}_{01}^{0}(t)^{0}+\vec{r}_{12}^{0}(t) \\
& =C_{1}^{0}(t) \vec{r}_{12}^{1}
\end{aligned}
$$

Linear Velocity

- Velocity

$$
\begin{aligned}
\dot{\vec{r}}_{02}^{0}(t) & =\frac{d}{d t} C_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\dot{C}_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\left[\vec{\omega}_{01}^{0} \times\right] C_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t)
\end{aligned}
$$

Linear Velocity

- Acceleration

Linear Velocity

- Consider the motion of a moving point (origin of frame $\{2\}$) in a rotating frame (frame $\{1\}$) as seen from an inertial (frame $\{0\}$)
- Frame 0 and 1 have the same origin
- frame 1 rotates (about a unit vector \vec{k}) wrt frame 0
- the origin of frame 2 is moving wrt frame 1
- Position:

$$
\begin{aligned}
\vec{r}_{02}^{0}(t) & =\vec{r}_{01}^{0}(t)^{0}+\vec{r}_{12}^{0}(t) \\
& =C_{1}^{0}(t) \vec{r}_{12}^{1}(t)
\end{aligned}
$$

\Rightarrow now a function of time !!

Linear Velocity

- Velocity

$$
\begin{aligned}
\dot{\vec{r}}_{02}^{0}(t) & =\frac{d}{d t} C_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\dot{C}_{1}^{0}(t) \vec{r}_{12}^{1}+C_{1}^{0}(t) \dot{\vec{r}}_{12}^{1}(t) \\
& =\left[\vec{\omega}_{01}^{0} \times\right] C_{1}^{0}(t) \vec{r}_{12}^{1}+C_{1}^{0}(t) \dot{\vec{r}}_{12}^{1}(t) \\
& =\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t)+C_{1}^{0}(t) \dot{\vec{r}}_{12}^{1}(t)
\end{aligned}
$$

Note: $\dot{\vec{r}}_{02}^{0} \neq C_{1}^{0}(t) \dot{\vec{r}}_{12}^{1}(t)$

Linear Velocity

- Acceleration

$$
\begin{aligned}
& \ddot{\vec{r}}_{02}^{0}=\frac{d}{d t}\left\{\vec{\omega}_{01}^{0} \times\left(C_{1}^{0}(t) \vec{r}_{12}^{1}\right)+C_{1}^{0} \dot{\vec{r}}_{12}^{1}\right\} \\
& =\dot{\vec{\omega}}_{01}^{0} \times\left(C_{1}^{0}(t) \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(\dot{C}_{1}^{0}(t) \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \dot{\vec{r}}_{12}^{1}\right)+\dot{C}_{1}^{0} \dot{\vec{r}}_{12}^{1}+C_{1}^{0} \ddot{\vec{r}}_{12}^{1} \\
& \begin{array}{c}
=\dot{\vec{\omega}}_{\mathbf{0 1}}^{\mathbf{0}} \times \vec{r}_{\mathbf{1 2}}^{\mathbf{0}}(t)+\vec{\omega}_{\mathbf{0 1}}^{0} \times\left(\vec{\omega}_{\mathbf{0 1}}^{0} \times \vec{r}_{\mathbf{1 2}}^{\mathbf{0}}(t)\right)+2 \vec{\omega}_{\mathbf{0 1}}^{0} \times\left(C_{\mathbf{1}}^{\mathbf{0}} \dot{\vec{r}}_{\mathbf{1 2}}^{\mathbf{1}}\right)+C_{\mathbf{1}}^{\mathbf{0}} \ddot{\vec{r}}_{\mathbf{1 2}}^{\mathbf{1}} \\
\text { Cel } \quad \text { Contripetal accel }\left(\omega^{2} r\right) \\
\text { Coriolis accel }(2 \omega \times v)
\end{array}
\end{aligned}
$$

