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Angular Velocity

e Since the relative and fixed axis rotations must be performed in a particular order,
their derivatives are somewhat challenging
e The angle-axis format, however, is readily differentiable as we can encode the 3

parameters by
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Angular Velocity

e For a sufficiently “small” time interval we can often consider the axis of rotation to be
~ constant (L.e,K(t) = k)

e This is referred to as the angular velocity (&J(t)) or the so called “body reference”

angular velocity

Angular Velocity
d(t) = kO(¢) (2)




Quaternion Multiply
e Quaternion multiply
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Quaternion Multiply
e Quaternion multiply (corresponds to reverse order DCM)
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Angular Velocity
e Recalling that
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Angular Velocity

o let Wy, = ([k;’b@@(t)) = (w5, ®)]

e therefore,
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e and consequently,
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Angular Velocity

e Now,
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where &% = g8(t) @ vb, @ (7¢(t))"" and (72¢(t)) " @ g¢(t) = 1.
e and consequently,
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