Lecture

Navigation Mathematics: Kinematics
 (Angular Velocity: Quaternion Representation)

EE 570: Location and Navigation

Lecture Notes Update on February 11, 2014

Aly El-Osery, Electrical Engineering Dept., New Mexico Tech
Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University

Angular Velocity

- Since the relative and fixed axis rotations must be performed in a particular order, their derivatives are somewhat challenging
- The angle-axis format, however, is readily differentiable as we can encode the 3 parameters by

$$
\vec{K} \equiv \vec{k}(t) \theta(t)=\left[\begin{array}{l}
K_{1}(t) \tag{1}\\
K_{2}(t) \\
K_{3}(t)
\end{array}\right]
$$

where $\theta=\|\vec{K}\|$

- Hence,

$$
\frac{d}{d t} \vec{K}(t)=\left[\begin{array}{c}
\dot{K}_{1}(t) \\
\dot{K}_{2}(t) \\
\dot{K}_{3}(t)
\end{array}\right]
$$

Angular Velocity

- For a sufficiently "small" time interval we can often consider the axis of rotation to be \approx constant (i.e., $\vec{K}(t)=\vec{k}$)

$$
\begin{aligned}
\frac{d}{d t} \vec{K}(t) & =\frac{d}{d t}(\vec{k} \theta(t)) \\
& =\vec{k} \dot{\theta}(t)
\end{aligned}
$$

- This is referred to as the angular velocity $(\vec{\omega}(t))$ or the so called "body reference" angular velocity

Angular Velocity

$$
\begin{equation*}
\vec{\omega}(t) \equiv \vec{k} \dot{\theta}(t) \tag{2}
\end{equation*}
$$

Quaternion Multiply

- Quaternion multiply

$$
\bar{r}=\bar{q} \otimes \bar{p}=[\bar{q} \otimes] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}+\vec{q} \times \vec{p}
\end{array}\right]
$$

where

$$
[\bar{q} \otimes]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & -q_{z} & q_{y} \\
q_{y} & q_{z} & q_{s} & -q_{x} \\
q_{z} & -q_{y} & q_{x} & q_{s}
\end{array}\right]
$$

\qquad
Quaternion Multiply

- Quaternion multiply (corresponds to reverse order DCM)

$$
\bar{r}=\bar{q} \circledast \bar{p}=[\bar{q} \circledast] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}-\vec{q} \times \vec{p}
\end{array}\right]
$$

$$
\bar{q} \otimes \bar{p}=\bar{p} \circledast \bar{q}
$$

where

$$
[\bar{q} \circledast]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & q_{z} & -q_{y} \\
q_{y} & -q_{z} & q_{s} & q_{x} \\
q_{z} & q_{y} & -q_{x} & q_{s}
\end{array}\right]
$$

Angular Velocity

- Recalling that

$$
\left[\bar{q}_{b}^{a}(t) \otimes\right]=e^{\frac{1}{2}\left[\breve{k}_{a b}^{a} \otimes\right] \theta(t)}=\cos (\theta / 2) \mathcal{I}+\frac{1}{2}\left[\breve{k}_{a b}^{a} \otimes\right] \frac{\sin (\theta / 2)}{\theta / 2}
$$

where

$$
\breve{k}=\left[\begin{array}{l}
0 \\
\vec{k}
\end{array}\right]
$$

- Hence,

$$
\begin{aligned}
\frac{d}{d t}\left[\bar{q}_{b}^{a}(t) \otimes\right] & =\frac{d}{d t} e^{\frac{1}{2}\left[\breve{k}_{a b}^{a} \otimes\right] \theta(t)} \\
& =\frac{\partial\left[\bar{q}_{b}^{a}(t) \otimes\right]}{\partial \theta} \frac{d \theta}{d t} \\
& =\frac{1}{2}\left[\breve{k}_{a b}^{a} \otimes\right] e^{\frac{1}{2}\left[\breve{k}_{a b}^{a} \otimes\right] \theta(t)} \dot{\theta}(t) \\
& =\frac{1}{2}\left(\left[\breve{k}_{a b}^{a} \otimes\right] \dot{\theta}(t)\right)\left[\bar{q}_{b}^{a}(t) \otimes\right]
\end{aligned}
$$

Angular Velocity

- let $W_{a b}^{a}=\left(\left[\breve{k}_{a b}^{a} \otimes\right] \dot{\theta}(t)\right)=\left[\breve{\omega}_{a b}^{a} \otimes\right]$
- therefore,

$$
W_{a b}^{a}=\left[\begin{array}{cccc}
0 & -\omega_{a b, x}^{a} & -\omega_{a b, y}^{a} & -\omega_{a b, z}^{a} \\
\omega_{a b, x}^{a} & 0 & -\omega_{a b, z}^{a} & \omega_{a b, y}^{a} \\
\omega_{a b, y}^{a} & \omega_{a b, z}^{a} & 0 & -\omega_{a b, x}^{a} \\
\omega_{a b, z}^{a} & -\omega_{a b, y}^{a} & \omega_{a b, x}^{a} & 0
\end{array}\right]
$$

- and consequently,

$$
\dot{\bar{q}}_{b}^{a}(t)=\frac{1}{2}\left[\breve{\omega}_{a b}^{a} \otimes\right] \bar{q}_{b}^{a}(t)
$$

Angular Velocity

- Now,

$$
\begin{aligned}
\dot{\bar{q}}_{b}^{a}(t) & =\frac{1}{2}\left[\breve{\omega}_{a b}^{a} \otimes\right] \bar{q}_{b}^{a}(t)=\frac{1}{2} \breve{\omega}_{a b}^{a} \otimes \bar{q}_{b}^{a}(t) \\
& =\frac{1}{2} \bar{q}_{b}^{a}(t) \otimes \breve{\omega}_{a b}^{b} \otimes\left(\bar{q}_{b}^{a}(t)\right)^{-1} \otimes \bar{q}_{b}^{a}(t) \\
& =\frac{1}{2}\left[\bar{q}_{b}^{a}(t) \otimes\right] \breve{\omega}_{a b}^{b} \\
& =\frac{1}{2}\left[\breve{\omega}_{a b}^{b} \circledast\right] \bar{q}_{b}^{a}(t)
\end{aligned}
$$

where $\breve{\omega}_{a b}^{a}=\bar{q}_{b}^{a}(t) \otimes \breve{\omega}_{a b}^{b} \otimes\left(\bar{q}_{b}^{a}(t)\right)^{-1}$ and $\left(\bar{q}_{b}^{a}(t)\right)^{-1} \otimes \bar{q}_{b}^{a}(t)=1$.

- and consequently,

$$
\begin{equation*}
\dot{\bar{q}}_{b}^{a}(t)=\frac{1}{2}\left[\breve{\omega}_{a b}^{a} \otimes\right] \bar{q}_{b}^{a}(t)=\frac{1}{2}\left[\bar{q}_{b}^{a}(t) \otimes\right] \breve{\omega}_{a b}^{b}=\frac{1}{2}\left[\breve{\omega}_{a b}^{b} \circledast\right] \bar{q}_{b}^{a}(t) \tag{3}
\end{equation*}
$$

