# EE 570: Location and Navigation Navigation Equations: An Overview 

## Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA
February 11, 2014

- The fundamental inertial navigation problem:
- Using inertial sensors (accels \&i gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
- Assumptions:
(1) Know where we started (initial PVA: $\vec{r}_{?}^{?}, \vec{v}_{?}^{?}$, \& $C_{b}^{?}$ )
(2) Inertial sensors ( $\vec{\omega}_{i b}^{b}$ and $\vec{f}_{i b}^{b}$ )
(3) Have a gravity $\left(\vec{g}_{b}^{2}\right)$ and/or gravitational $\left(\vec{\gamma}_{?_{b}}^{?}\right)$ model
- Where am I? Current PVA?
- With respect to which frame?


## Inertial Navigation

- The process of "integrating" angular velocity $\&$ acceleration to determine one's position, velocity, and attitude (PVA)
- To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels
- Typically configured in an orthogonal triad
- The "mechanization" can be performed wrt:

- the ECI frame,
- the ECEF frame,
- the Nav frame.


## ISA, IMU, عi INS

- An Inertial Navigation System (INS)
- ISA - Inertial Sensor Assembly
- Typically, 3-gyros, 3-accels, and basic electronics
- IMU - Inertial Measurement Unit
- ISA + compensation algorithms (i.e., basic processing)
- INS - Inertial Navigation System
- IMU + gravity model + "mechanization" algorithm



## Mechanization Process


(1) Attitude Update

- Update the prior attitude using the current angular velocity
(2) Transform the specific force measurement $\left(\vec{f}_{i b}^{?}=C_{b}^{?} \vec{f}_{i b}^{b}\right)$
- Typically, using the attitude computed in step 1
(3) Update the velocity
- Essentially integrate the result from step 2 with the use of a gravity/gravitational model ( $\left.\vec{f}_{i b}=\vec{a}_{i b}-\vec{\gamma}_{i b}\right)$
(9) Update the position
- integrate the result from step 3


## A Four Step Mechanization



