EE 570: Location and Navigation Navigation Equations: An Overview

Stephen Bruder¹ Aly El-Osery²

¹Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA ²Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

February 11, 2014

Stephen Bruder, Aly El-Osery (ERAU,NMT) EE 570: Location and Navigation

- The fundamental inertial navigation problem:
 - Using inertial sensors (accels & gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
 - Assumptions:
 - Know where we started (initial PVA: $\vec{r}_{?b}^{?}, \vec{v}_{?b}^{?}, \& C_{b}^{?}$)
 - 2 Inertial sensors $(\vec{\omega}_{ib}^{b} \text{ and } \vec{f}_{ib}^{b})$
 - Solution Have a gravity $(\vec{g}_{b}^{?})$ and/or gravitational $(\vec{\gamma}_{b}^{?})$ model
 - Where am I? Current PVA?
 - With respect to which frame?

- The process of "integrating" angular velocity & acceleration to determine one's position, velocity, and attitude (PVA)
- To measure the acceleration and angular velocity vectors we need at least 3-gyros and 3-accels
 - Typically configured in an orthogonal triad
- The "mechanization" can be performed *wrt*:
 - the ECI frame,
 - the ECEF frame,
 - the Nav frame.

ISA, IMU, & INS

- An Inertial Navigation System (INS)
 - ISA Inertial Sensor Assembly
 - Typically, 3-gyros, 3-accels, and basic electronics
 - IMU Inertial Measurement Unit
 - ISA + compensation algorithms (i.e., basic processing)
 - INS Inertial Navigation System
 - IMU + gravity model + "mechanization" algorithm

Stephen Bruder, Aly El-Osery (ERAU,NMT)

EE 570: Location and Navigation

February 11, 2014 5 / 7

- Attitude Update
 - Update the prior attitude using the current angular velocity
- **②** Transform the specific force measurement $(\vec{f}_{ib}^{?} = C_b^? \vec{f}_{ib}^{b})$
 - Typically, using the attitude computed in step 1
- Opdate the velocity
 - Essentially integrate the result from step 2 with the use of a gravity/gravitational model ($\vec{f}_{ib} = \vec{a}_{ib} \vec{\gamma}_{ib}$)
- Update the position
 - integrate the result from step 3

A Four Step Mechanization

Stephen Bruder, Aly El-Osery (ERAU,NMT)

EE 570: Location and Navigation

February 11, 2014 7 / 7