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1 Gyro Noise Characteristics

Gyro Constant Bias (°/h)
A constant in the output of a gyro in the absence of rotation, in °/h.

Error Growth
Linearly growing error in the angle domain of et.

Model
Random constant.

Gyro Integrated White Noise
Assuming the rectangular rule is used for integration, a sampling period of Ts; and a
time span of nT;.
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Gyro Integrated White Noise
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Angle Random Walk (°/+v/h)
Integrated noise resulted in zero-mean random walk with standard deviation that grows
with time as

oy = o/ Tst 4)
We define ARW as
ARW =0p(1)  (°/Vh) ()
In terms of PSD
ARW(* /) = 6170\/13513((0/11)2/142) ©)

Error Growth
ARW times root of the time in hours.

Model
White noise.

Gyro Bias Instability (°/h)
e Due to flicker noise with spectrum 1/F.
e Results in random variation in the bias.
e Normally more noticeable at low frequencies.
e At high frequencies, white noise is more dominant.

Error Growth
Variance grows over time.

Model
First order Gauss-Markov.

2 Accel Noise Characteristics

Accel Constant Bias (pg)
A constant deviation in the accelerometer from the true value, in m/s2.

Error growth
Double integrating a constant bias error of € results in a quadratically growing error in
position of et?/2.

Model
Random constant.




Velocity Random Walk (m/s/\/ﬁ)
Integrating accelerometer output containing white noise results in velocity random walk

(VRW) (m/s/+/h). Similar to development of ARW, if we double integrate white noise we
get
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Error Growth
Computing the variance results in
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Model
White noise.

Accel Bias Stability (1g)

Error growth
Grows as t°/2.

Model
First order Gauss-Markov.

3 Allan Variance

Allan Variance Introduction
It is a time domain analysis techniques designed originally for characterizing noise in
clocks. It was first proposed by David Allan in 1966.

Allan Variance Computation

1. Divide your N-point data sequence into adjacent windows of sizen = 1,2,4,8,..., M <
N/2.
2. For every n generate the sequence

Xnj + Xpjy1+ -0 + Xnj+n—1

yj(n) = - , j:O,l,...,[N}—l )

3. Plot log-log of the Allan deviation which is square root of
2 I - 2
Tanian(nTs) = 2N=1) ]; (Vi —yj-1) (10)

versus averaging time T = nT;
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4 Using PSD and Allan Variance

One-sided PSD - Typical Slopes

PSD((° /h)2/Hz)
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Noise Parameters

Noise Type AV ¢?(t) | PSD (2-sided)
Quantization Noise 3% (27 f)2a? T,
Angle/Velocity Random Walk % o?
Flicker Noise 22 ?(2) %
Angular Rate/Accel Random Walk ”‘;—T (27‘1;) >
Ramp Noise ”‘ZZT : #
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