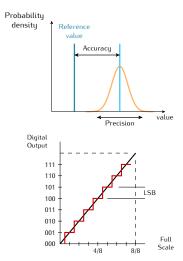
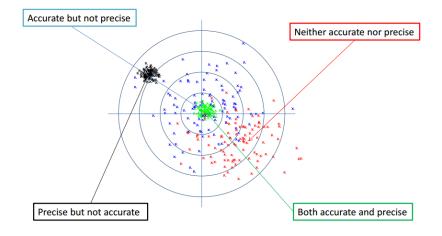
# Lecture Sensor Technology

# EE 570: Location and Navigation

Lecture Notes Update on February 27, 2014


Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University Aly El-Osery, Electrical Engineering Dept., New Mexico Tech

.1


.2

#### Terminology

- Accuracy: Proximity of the measurement to the true value
- Precision: The consistency with which a measurement can be obtained
- **Resolution:** The magnitude of the smallest detectable change
- **Sensitivity:** The ratio between the change in the output signal to a small change in input physical signal. Slope of the input-output fit line.
- Linearity: the deviation of the output from a "best" straight line fit for a given range of the sensor



#### Accuracy vs Precision



.3

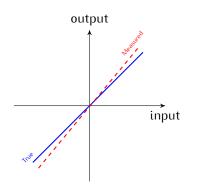
.4

#### Inertial Sensors — Bias Errors

- Bias often the most critical error
  - Fixed Bias  $b_{FB}$ 
    - \* Deterministic in nature and can be addressed by calibration
    - \* Often modeled as a function of temperature
  - Bias Stability b<sub>BS</sub>
    - \* Varies from run-to-run as a random constant
  - Bias Instability  $b_{BI}$ 
    - \* In-run bias drift typically modeled as random walk

#### **Bias Errors**

$$\Delta f = b_{a,FB} + b_{a,BI} + b_{a,BS} = b_a$$
$$\Delta \omega = b_{g,FB} + b_{g,BI} + b_{g,BS} = b_g$$


#### Inertial Sensors — Scale Factor Errors

- Fixed scale factor error
  - Deterministic in nature and can be addressed by calibration
  - Often modeled as a function of temperature
- Scale Factor Stability  $s_a$  (accel) or  $s_g$  (gyro)
  - Varies from run-to-run as a random constant
  - Typically given in parts-per-million (ppm)

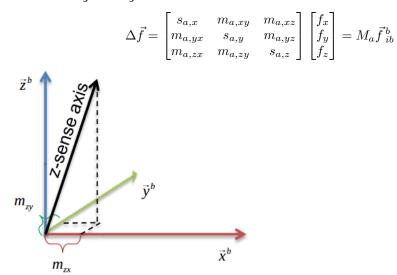
#### Scale Factor Errors

$$\Delta f = s_a f$$
$$\Delta \omega = s_g \omega$$

The scale factor represents a linear approximation to the steady-state sensor response over a given input range — True sensor response may have some non-linear characteristics



.6


.7

#### Inertial Sensors — Misalignment

- Refers to the angular difference between the ideal sense axis alignment and true sense axis vector
  - a deterministic quantity typically given in milliradians

$$\Delta f_z = m_{a,zx} f_x + m_{a,zy} f_y$$
$$\Delta \omega_z = m_{a,zx} \omega_x + m_{a,zy} \omega_y$$

• Combining misalignment & scale factor



Inertial Sensors — Cross-Axis Response

- Refers to the sensor output which occurs when the device is presented with a stimulus which is vectorially orthogonal to the sense axis
- Misalignment and cross-axis response are often difficult to distinguish Particularly during testing and calibration activities

#### Inertial Sensors — Other Noise Sources

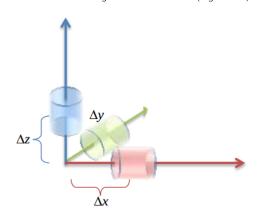
Typically characterized as additive in nature

- May have a compound form
  - white noise
    - \* Gyros: white noise in rate  $\Rightarrow$  Angle Random Walk (ARW)
    - \* Accels: white noise in accel  $\Rightarrow$  Velocity Random Walk (VRW)

- Quantization noise
  - \* May be due to LSB resolution in ADC's
- Flicker noise
- Colored noise

## Inertial Sensors — Gyro Specific Errors

- G-sensitivity
  - The gyro may be sensitive to acceleration
  - Primarily due to device mass assymetry
  - Mostly in Coriolis-based devices (MEMS)


$$\Delta \vec{\omega}_{ib}^{\ b} = G_g \vec{f}_{ib}^{\ b} a$$

- G<sup>2</sup>-Sensitivity
  - Anisoelastic effects
  - Due to products of orthogonal forces

#### Inertial Sensors — Accel Specific Errors

- Axis Offset
  - The accel may be mounted at a lever-arm distance from the "center" of the Inertial Measurement Unit (IMU)
    - \* Leads to an " $\omega^2 r$ " type effect

$$\Delta f_x = \omega_y^2 \Delta x + \omega_z^2 \Delta x = \left(\omega_y^2 + \omega_z^2\right) \Delta x$$



Inertial Sensors — Sensor Models

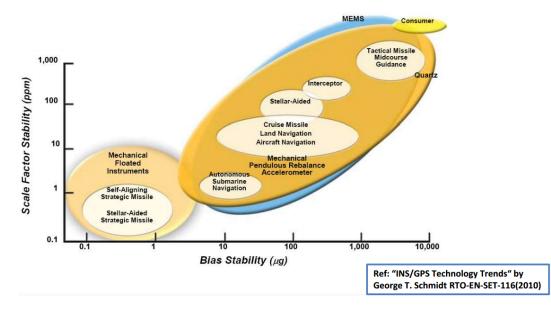
• Accelerometer model

$$\vec{f}_{ib}^{\,b} = \vec{f}_{\,ib}^{\,b} + \Delta \vec{f}_{\,ib}^{\,b} = \vec{b}_a + (\mathcal{I} + M_a)\vec{f}_{\,ib}^{\,b} + \vec{w}_a \tag{1}$$

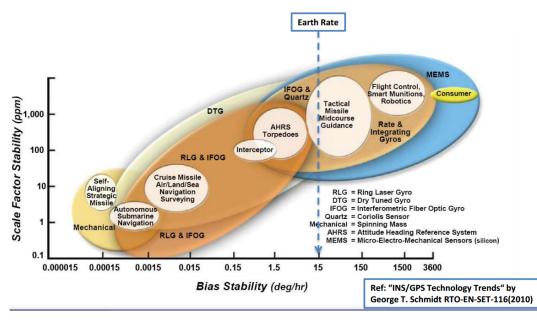
• Gyro Model

$$\tilde{\vec{\omega}}_{ib}^{\ b} = \vec{\omega}_{ib}^{\ b} + \Delta \vec{\omega}_{ib}^{\ b} = \vec{b}_g + (\mathcal{I} + M_g) \vec{\omega}_{ib}^{\ b} + G_g \vec{f}^{\ b} ib + \vec{w}_g$$
(2)

• Typically, each measures along a signle sense axis requiring three of each to measure the 3-tupple vector


.10

.11


.8

.9

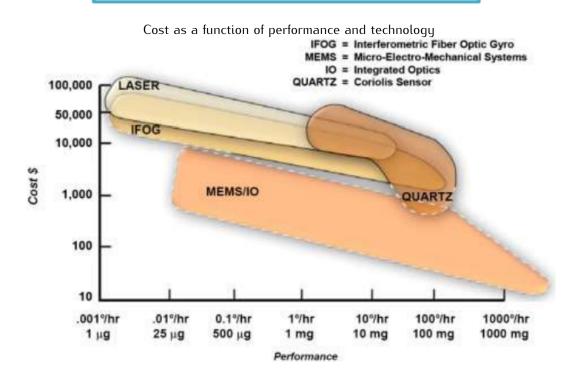
## Current Accel Application Areas







Grades, Performance and Cost


Different "Grades" of inertial sensors

.12

.13

| Class               | Position<br>performance | Gyro<br>technology          | Accelerometer<br>technology                        | Gyro bias    | Acc bias |
|---------------------|-------------------------|-----------------------------|----------------------------------------------------|--------------|----------|
| Strategic grade     | 1 nmi / 24 h            | ESG, RLG,<br>FOG            | Servo<br>accelerometer                             | < 0.005°/h   | < 30 µg  |
| Navigation<br>grade | 1 nmi / h               | RLG, FOG                    | Servo<br>accelerometer,<br>Vibrating beam          | 0.01°/h      | 50 µg    |
| Tactical grade      | > 10 nmi / h            | RLG, FOG                    | Servo<br>accelerometer,<br>Vibrating beam,<br>MEMS | 1*/h         | 1 mg     |
| AHRS                | NA                      | MEMS, RLG,<br>FOG, Coriolis | MEMS                                               | 1 - 10"/h    | 1 mg     |
| Control<br>system   | NA                      | Coriolis                    | MEMS                                               | 10 - 1000°/h | 10 mg    |

Ref: INS Tutorial, Norwegian Space Centre, 2008.06.09



.14