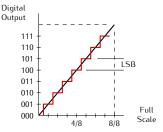
EE 570: Location and Navigation Sensor Technology

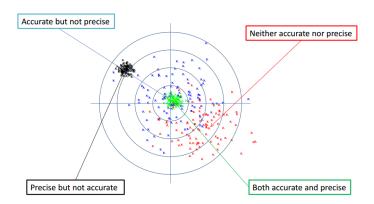
Stephen Bruder¹ Aly El-Osery²

¹Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA


²Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA


February 26, 2014

Terminology


- Accuracy: Proximity of the measurement to the true value
- Precision: The consistency with which a measurement can be obtained
- Resolution: The magnitude of the smallest detectable change
- Sensitivity: The ratio between the change in the output signal to a small change in input physical signal. Slope of the input-output fit line.
- Linearity: the deviation of the output from a "best" straight line fit for a given range of the sensor

Accuracy vs Precision

Inertial Sensors — Bias Errors

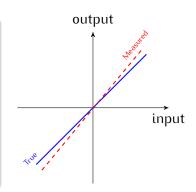
- Bias often the most critical error
 - Fixed Bias b_{FB}
 - Deterministic in nature and can be addressed by calibration
 - Often modeled as a function of temperature
 - Bias Stability b_{BS}
 - Varies from run-to-run as a random constant
 - Bias Instability b_{BI}
 - In-run bias drift typically modeled as random walk

Bias Errors

$$\Delta f = b_{a,FB} + b_{a,BI} + b_{a,BS} = b_a$$

$$\Delta \omega = b_{g,FB} + b_{g,BI} + b_{g,BS} = b_{g}$$

Inertial Sensors — Scale Factor Errors


- Fixed scale factor error
 - Deterministic in nature and can be addressed by calibration
 - Often modeled as a function of temperature
- ullet Scale Factor Stability s_a (accel) or s_g (gyro)
 - Varies from run-to-run as a random constant
 - Typically given in parts-per-million (ppm)

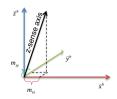
Scale Factor Errors

$$\Delta f = s_2 f$$

$$\Delta\omega=s_{
m g}\omega$$

The scale factor represents a linear approximation to the steady-state sensor response over a given input range — True sensor response may have some non-linear characteristics

Inertial Sensors — Misalignment


- Refers to the angular difference between the ideal sense axis alignment and true sense axis vector
 - a deterministic quantity typically given in milliradians

$$\Delta f_z = m_{a,zx} f_x + m_{a,zy} f_y$$

$$\Delta\omega_z=m_{g,zx}\omega_x+m_{g,zy}\omega_y$$

Combining misalignment & scale factor

$$\Delta \vec{f} = \begin{bmatrix} s_{a,x} & m_{a,xy} & m_{a,xz} \\ m_{a,yx} & s_{a,y} & m_{a,yz} \\ m_{a,zx} & m_{a,zy} & s_{a,z} \end{bmatrix} \begin{bmatrix} f_x \\ f_y \\ f_z \end{bmatrix} = M_a \vec{f}_{ib}^b$$

Inertial Sensors — Cross-Axis Response

- Refers to the sensor output which occurs when the device is presented with a stimulus which is vectorially orthogonal to the sense axis
- Misalignment and cross-axis response are often difficult to distinguish — Particularly during testing and calibration activities

Inertial Sensors — Other Noise Sources

Typically characterized as additive in nature

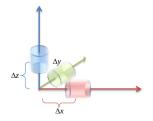
- May have a compound form
 - white noise
 - Gyros: white noise in rate ⇒ Angle Random Walk (ARW)
 - Accels: white noise in accel ⇒ Velocity Random Walk (VRW)
 - Quantization noise
 - May be due to LSB resolution in ADC's
 - Flicker noise
 - Colored noise

Inertial Sensors — Gyro Specific Errors

- G-sensitivity
 - The gyro may be sensitive to acceleration
 - Primarily due to device mass assymetry
 - Mostly in Coriolis-based devices (MEMS)

$$\Delta \vec{\omega}_{ib}^{b} = G_{g}\vec{f}_{ib}^{b}a$$

- G²-Sensitivity
 - Anisoelastic effects
 - Due to products of orthogonal forces


Inertial Sensors — Accel Specific Errors

Axis Offset

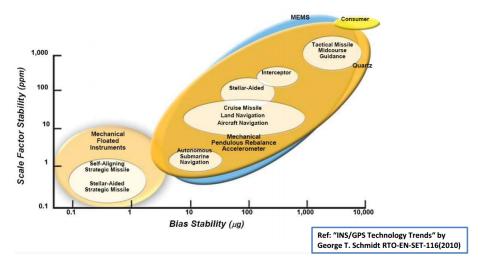
- The accel may be mounted at a lever-arm distance from the "center" of the Inertial Measurement Unit (IMU)
 - Leads to an " $\omega^2 r$ " type effect

$$\Delta f_x = \omega_y^2 \Delta x + \omega_z^2 \Delta x = \left(\omega_y^2 + \omega_z^2\right) \Delta x$$

Inertial Sensors — Sensor Models

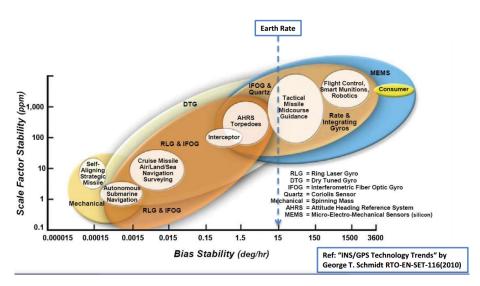
Accelerometer model

$$\tilde{\vec{f}}_{ib}^{\ b} = \vec{f}_{ib}^{\ b} + \Delta \vec{f}_{ib}^{\ b} = \vec{b}_a + (\mathcal{I} + M_a)\vec{f}_{ib}^{\ b} + \vec{w}_a$$
 (1)


Gyro Model

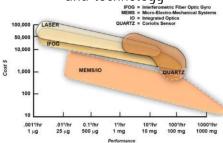
$$\tilde{\vec{\omega}}_{ib}^{\ b} = \vec{\omega}_{ib}^{\ b} + \Delta \vec{\omega}_{ib}^{\ b} = \vec{b}_g + (\mathcal{I} + M_g) \vec{\omega}_{ib}^{\ b} + G_g \vec{f}^{\ b} ib + \vec{w}_g$$
 (2)

• Typically, each measures along a signle sense axis requiring three of each to measure the 3-tupple vector


Current Accel Application Areas

Current Gyro Application Areas

Grades, Performance and Cost



Different "Grades" of inertial

36113013					
Class	Position performance	Gyro technology	Accelerometer technology	Gyro bias	Acc bias
Strategic grade	1 nmi / 24 h	ESG, RLG, FOG	Servo accelerometer	< 0.005°/h	< 30 µg
Navigation grade	1 nmi/h	RLG, FOG	Servo accelerometer, Vibrating beam	0.01°/h	50 µg
Tactical grade	> 10 nmi / h	RLG, FOG	Servo accelerometer, Vibrating beam, MEMS	1°/h	1 mg
AHRS	NA	MEMS, RLG, FOG, Coriolis	MEMS	1 - 10°/h	1 mg
Control system	NA	Coriolis	MEMS	10 - 1000°/h	10 mg

Ref: INS Tutorial, Norwegian Space Centre, 2008.06.09

Cost as a function of performance and technology

