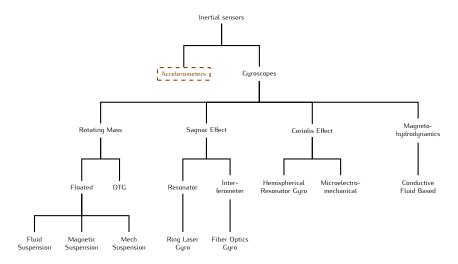

Lecture Sensor Technology EE 570: Location and Navigation

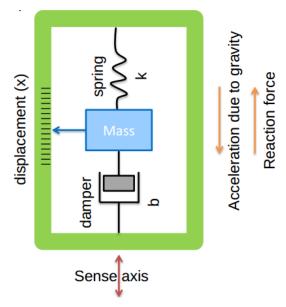
Lecture Notes Update on February 25, 2014


Stephen Bruder, Electrical & Computer Engineering, Embry-Riddle Aeronautical University Aly El-Osery, Electrical Engineering Dept., New Mexico Tech

1 Overview

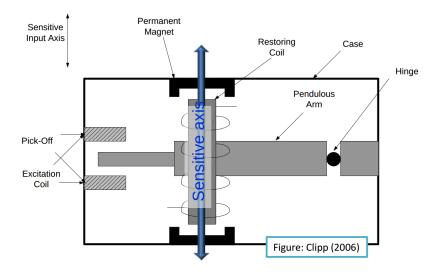
Accelerometers

Accelerometers


.3

.1

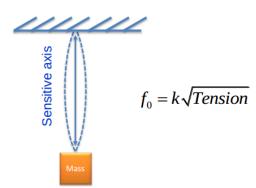
Accelerometers 2


Pendulous Mass

- A mass, a suspension system, and a sensing element
- Displacement \propto applied force resolved along the senstive axis Modeled as basic 2^{nd} order system $f = m\ddot{x} + b\dot{x} + kx$ In steady state $m\ddot{x} \approx -kx$, hence, $SF = \frac{x}{\ddot{x}} = -\frac{m}{k}$

Pendulous Mass — Closed-loop

- Generates a force to null the displacement
- Improved linearity

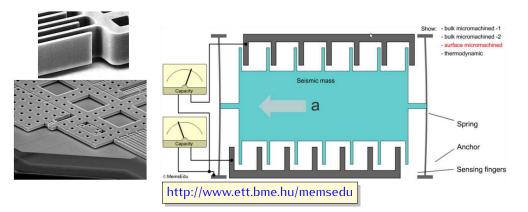


.4

.5

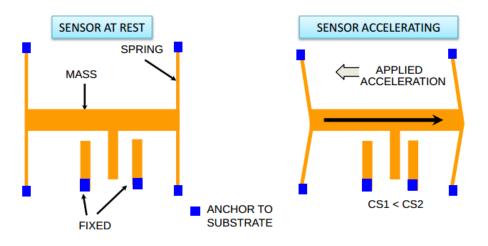
Vibratory

- Vibrating Beam Accelerometer (VBA)
- Acceleration causes a change in resonance frequency



.6

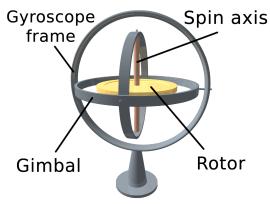
.7


.8

MEMS Accelerometer

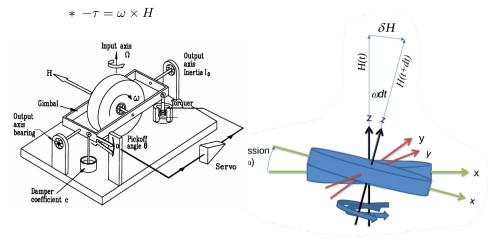
MEMS Accelerometer

- Spring and mass from silicon and add fingers make a variable differential capacitor
- Change in displacement \Rightarrow change in capacitance



3 Gyroscopes

Rotating Mass Gyroscopes


- Conservation of angular momentum
- The spinning mass will resist change in its angula momentum

- Angular momentum
 - $H = I\omega$ =(Inertia × angular velocity)
- By placing the gyro in a pair of frictionless gimbals it is free to maintain its inertial spin axis
- By placing an index of the x-gimbal axes and y-gimbal axis two degrees of orientational motion can be measured

Rotating Mass Gyroscopes

- Precession
 - Disk is spinning about z-axis
 - Apply a torque about the x-axis
 - Results in precession about the y-axis

Sagnac Effect Gyroscopes

- Fiber Optical Gyro (FOG)
 - Basic idea is that light travels at a constant speed
 - If rotated (orthogonal to the plane) one path length becomes longer and the other shorter
 - This is known as the Sagnac effect
 - Measuring path length change (over a dt) allows ω to be measured

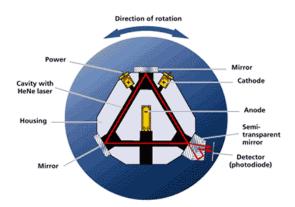
.9

Sagnac Effect Gyroscopes

- Fiber Optical Gyro (FOG)
 - Measure the time difference between the CW and CCW paths

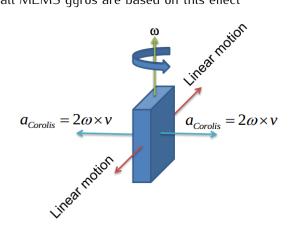
 $\Rightarrow \Delta t \approx \frac{4\pi R^2 \omega}{c^2}$

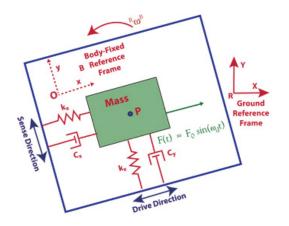
- CW transit time = t_{CW}
- CCW transit time = t_{CCW}
- $L_{CW} = 2\pi R + R\omega t_{CW} = ct_{CW}$
- $L_{CCW} = 2\pi R R\omega t_{CCW} = ct_{CCW}$
- $t_{CW}=2\pi R/(c-R\omega)$
- $t_{CCW} = 2\pi R/(c+R\omega)$
- With N turns $\Delta t \approx \frac{N4A\omega}{c^2}$
- Phase $\phi_c \approx 2\pi\Delta t f_c = 2\pi\Delta t c/\lambda_0 = \frac{8\pi NA\omega}{c\lambda_0}$


Sagnac Effect Gyroscopes

- Ring Laser Gyro (RLG)
 - A helium-neon laser produces two light beams, one traveling in CW direction and the other in the CCW direction

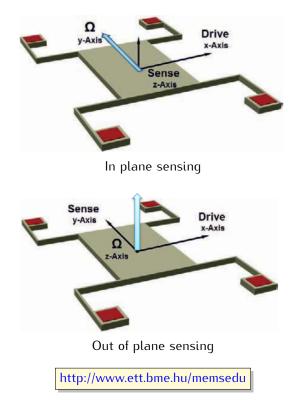
R


- When rotating
 - * The wavelength in direction of rotation increases (decrease in freq)
 - * The wavelength in opposite direction decreases (increase in freq)
 - * Similarly, it can be shown that


Gyroscopes: Coriolis Effect

- Vibratory coriolis angular rate sensor
 - Virtually all MEMS gyros are based on this effect

Gyroscopes: Coriolis Effect


• Basic planer vibratory gyro

.13

.14

Gyroscopes: Coriolis Effect

4 Summary

Summary

- Accelerometers
 - Measure specific force of the body frame wrt the inertial frame in the body frame coordinates
 - * Need to subtract the acceleration due to gravity to obtain the motion induced quantity
 - In general, all points on a rigid body do NOT experience the same linear velocity
- Gyroscopes
 - Measure the inertial angular velocity
 - * Essentially, the rate of change of orientation
 - All points on a rigid body experience the same angular velocity

7