EE 570: Location and Navigation Sensor Technology

Stephen Bruder¹ Aly El-Osery²

¹Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

²Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA

February 25, 2014

Accelerometers

Accelerometers

Pendulous Mass

- A mass, a suspension system, and a sensing element
- Modeled as basic 2^{nd} order system $f = m\ddot{x} + b\dot{x} + kx$
- In steady state $m\ddot{x} \approx -kx$, hence, $SF = \frac{x}{\ddot{x}} = -\frac{m}{k}$

Pendulous Mass — Closed-loop

- Generates a force to null the displacement
- Improved linearity

Vibratory

- Vibrating Beam Accelerometer (VBA)
- Acceleration causes a change in resonance frequency

MEMS Accelerometer

MEMS Accelerometer

- Spring and mass from silicon and add fingers make a variable differential capacitor
- Change in displacement ⇒ change in capacitance

Rotating Mass Gyroscopes

- Conservation of angular momentum
- The spinning mass will resist change in its angula momentum
- Angular momentum
 - $H = I\omega = (Inertia \times angular \ velocity)$
- By placing the gyro in a pair of frictionless gimbals it is free to maintain its inertial spin axis
- By placing an index of the x-gimbal axes and y-gimbal axis two degrees of orientational motion can be measured

Rotating Mass Gyroscopes

Precession

- Disk is spinning about z-axis
- Apply a torque about the x-axis
- Results in precession about the y-axis

- Fiber Optical Gyro (FOG)
 - Basic idea is that light travels at a constant speed
 - If rotated (orthogonal to the plane) one path length becomes longer and the other shorter
 - This is known as the Sagnac effect
 - Measuring path length change (over a dt) allows ω to be measured

- Fiber Optical Gyro (FOG)
 - Measure the time difference between the CW and CCW paths
 - CW transit time = t_{CW}
 - CCW transit time = t_{CCW}
 - $L_{CW} = 2\pi R + R\omega t_{CW} = ct_{CW}$
 - $L_{CCW} = 2\pi R R\omega t_{CCW} = ct_{CCW}$
 - $t_{CW} = 2\pi R/(c R\omega)$
 - $t_{CCW} = 2\pi R/(c + R\omega)$ $\Rightarrow \Delta t \approx \frac{4\pi R^2 \omega}{c^2}$
 - With N turns $\Delta t \approx \frac{N4A\omega}{c^2}$
 - Phase $\phi_c \approx 2\pi\Delta t f_c = 2\pi\Delta t c/\lambda_0 = \frac{8\pi NA\omega}{c\lambda_0}$

- Fiber Optical Gyro (FOG)
 - Measure the time difference between the CW and CCW paths
 - CW transit time = t_{CW}
 - CCW transit time = t_{CCW}
 - $L_{CW} = 2\pi R + R\omega t_{CW} = ct_{CW}$
 - $L_{CCW} = 2\pi R R\omega t_{CCW} = ct_{CCW}$
 - $t_{CW} = 2\pi R/(c R\omega)$
 - $t_{CCW} = 2\pi R/(c + R\omega)$ $\Rightarrow \Delta t \approx \frac{4\pi R^2 \omega}{c^2}$
 - With N turns $\Delta t \approx \frac{N4A\omega}{c^2}$
 - Phase $\phi_c \approx 2\pi \Delta t f_c = 2\pi \Delta t c/\lambda_0 = \frac{8\pi NA\omega}{c\lambda_0}$

- Ring Laser Gyro (RLG)
 - A helium-neon laser produces two light beams, one traveling in CW direction and the other in the CCW direction
 - When rotating
 - The wavelength in direction of rotation increases (decrease in freq)
 - The wavelength in opposite direction decreases (increase in freq)
 - Similarly, it can be shown that

Gyroscopes: Coriolis Effect

- Vibratory coriolis angular rate sensor
 - Virtually all MEMS gyros are based on this effect

Gyroscopes: Coriolis Effect

• Basic planer vibratory gyro

Gyroscopes: Coriolis Effect

In plane sensing

Out of plane sensing

http://www.ett.bme.hu/memsedu

Summary

Accelerometers

- Measure specific force of the body frame wrt the inertial frame in the body frame coordinates
 - Need to subtract the acceleration due to gravity to obtain the motion induced quantity
- In general, all points on a rigid body do NOT experience the same linear velocity

Gyroscopes

- Measure the inertial angular velocity
 - Essentially, the rate of change of orientation
- All points on a rigid body experience the same angular velocity