# EE 570: Location and Navigation Sensor Technology 

## Stephen Bruder ${ }^{1}$ Aly El-Osery ${ }^{2}$

${ }^{1}$ Electrical and Computer Engineering Department, Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA
${ }^{2}$ Electrical Engineering Department, New Mexico Tech
Socorro, New Mexico, USA
February 25, 2014

## Accelerometers



## Accelerometers



## Pendulous Mass

- A mass, a suspension system, and a sensing element
- Displacement $\propto$ applied force resolved along the senstive axis
- Modeled as basic $2^{\text {nd }}$ order system $f=m \ddot{x}+b \dot{x}+k x$
- In steady state $m \ddot{x} \approx-k x$, hence, $S F=\frac{x}{\dot{x}}=-\frac{m}{k}$



## Pendulous Mass — Closed-loop

- Generates a force to null the displacement
- Improved linearity

- Vibrating Beam Accelerometer (VBA)
- Acceleration causes a change in resonance frequency


## MEMS Accelerometer



- Spring and mass from silicon and add fingers make a variable differential capacitor
- Change in displacement $\Rightarrow$ change in capacitance



## Rotating Mass Gyroscopes

- Conservation of angular momentum
- The spinning mass will resist change in its angula momentum
- Angular momentum
- $H=I \omega=$ (Inertia $\times$ angular velocity)
- By placing the gyro in a pair of frictionless gimbals it is free to maintain

- By placing an index of the x-gimbal axes and $y$-gimbal axis two degrees of orientational motion can be measured


## Rotating Mass Gyroscopes

- Precession
- Disk is spinning about z-axis
- Apply a torque about the x-axis
- Results in precession about the $y$-axis



## Sagnac Effect Gyroscopes

- Fiber Optical Gyro (FOG)
- Basic idea is that light travels at a constant speed
- If rotated (orthogonal to the plane) one path length becomes longer and the other shorter
- This is known as the Sagnac effect
- Measuring path length change (over a $d t$ ) allows $\omega$ to be measured



## Sagnac Effect Gyroscopes

- Fiber Optical Gyro (FOG)
- Measure the time difference between the CW and CCW paths
- CW transit time $=t_{C W}$
- CCW transit time $=t_{C C W}$
- $L_{C W}=2 \pi R+R \omega t_{C W}=c t_{C W}$
- $L_{C C W}=2 \pi R-R \omega t_{C C W}=c t c c w$
- $t_{C W}=2 \pi R /(c-R \omega)$
- $t_{C C W}=2 \pi R /(c+R \omega)$
- With $N$ turns $\Delta t \approx \frac{N 4 A \omega}{c^{2}}$
- Phase $\phi_{c} \approx 2 \pi \Delta t f_{c}=2 \pi \Delta t c / \lambda_{0}=\frac{8 \pi N A \omega}{c \lambda_{0}}$


## Sagnac Effect Gyroscopes

- Fiber Optical Gyro (FOG)
- Measure the time difference between the CW and CCW paths
- CW transit time $=t_{C W}$
- CCW transit time $=t_{C C W}$
- $L_{C W}=2 \pi R+R \omega t_{C W}=c t_{C W}$
- $L_{C C W}=2 \pi R-R \omega t_{C C W}=c t c c w$
- $t_{C W}=2 \pi R /(c-R \omega)$
- $t_{C C W}=2 \pi R /(c+R \omega)$
- With $N$ turns $\Delta t \approx \frac{N 4 A \omega}{c^{2}}$
- Phase $\phi_{c} \approx 2 \pi \Delta t f_{c}=2 \pi \Delta t c / \lambda_{0}=\frac{8 \pi N A \omega}{c \lambda_{0}}$


## Sagnac Effect Gyroscopes

- Ring Laser Cyyro (RLG)
- A helium-neon laser produces two light beams, one traveling in CW direction and the other in the CCW direction
- When rotating
- The wavelength in direction of rotation increases (decrease in freq)
- The wavelength in opposite direction decreases (increase in freq)

- Similarly, it can be shown that

$$
\Delta f \approx \frac{4 A \omega}{\lambda_{0}}
$$

## Gyroscopes: Coriolis Effect

- Vibratory coriolis angular rate sensor
- Virtually all MEMS gyros are based on this effect



## Gyroscopes: Coriolis Effect

- Basic planer vibratory gyro



## Giyroscopes: Coriolis Effect



> http://www.ett.bme.hu/memsedu

- Accelerometers
- Measure specific force of the body frame wrt the inertial frame in the body frame coordinates
- Need to subtract the acceleration due to gravity to obtain the motion induced quantity
- In general, all points on a rigid body do NOT experience the same linear velocity
- Gyroscopes
- Measure the inertial angular velocity
- Essentially, the rate of change of orientation
- All points on a rigid body experience the same angular velocity

