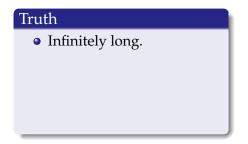
EE 570: Location and Navigation Power Spectral Density Estimation

Aly El-Osery¹ Stephen Bruder²

¹Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA
²Electrical and Computer Engineering Department, Embry-Riddle Aeronautical University Prescott, Arizona, USA

March 3, 2014

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 00000
 000000000000
 000000000000
 March 3, 2014
 1 / 37

Sensors suffer from noise effects that can not be removed through calibration, consquently, we need to

- understand the nature of the noise
- be able to extract parameters from actual data
- develop models to mimic noise in simulation to provide performance capabilities

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Aly El-Osery, Stephen Bruder
 (NMT,ERAU)
 EE 570: Location and Navigation
 March 3, 2014
 3 / 37

Truth	Practice
 Infinitely long. 	• Finite length.

Truth

- Infinitely long.
- Continuous in time and value.

Practice		
 Finit 	e length.	

Truth

- Infinitely long.
- Continuous in time and value.

Practice

- Finite length.
- Discrete in time and value.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00000
 00000000000
 00000000000
 March 3, 2014
 3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00000
 000000000000
 000000000000
 March 3, 2014
 3 / 37

 Alv El-Oserv, Stephen Bruder
 (NMT,ERAU)
 EE 570: Location and Navigation
 March 3, 2014
 3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00000
 00000000000
 00000000000
 March 3, 2014
 3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

Outline

Alv El-Oserv, Stephen Bruder (NMT, ERAU)

March 3, 2014

EE 570: Location and Navigation

3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

The signal is stochastic in nature.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Aly El-Osery, Stephen Bruder
 (NMT,ERAU)
 EE 570: Location and Navigation
 March 3, 2014
 3 / 37

(1)

Assume the voltage across a resistor *R* is e(t) and is producing a current i(t). The instantaneous power per ohm is $p(t) = e(t)i(t)/R = i^2(t)$.

Total Energy

$$E = \lim_{T \to \infty} \int_{-T}^{T} i^2(t) dt$$

Average Power

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} i^2(t) dt$$
⁽²⁾

Total Normalized Energy

$$E \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
(3)

Normalized Power

$$P \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(4)

For Energy Signals

$$\phi(\tau) = \int_{-\infty}^{\infty} x(t)x(t+\tau)dt$$
(5)

For Power Signals

$$R(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt$$
(6)

For Periodic Signals

$$R(\tau) = \frac{1}{T_0} \int_{T_0} x(t) x(t+\tau) dt$$
(7)

Outline	Review Mater		lom Signals and Noise 000000000	Discrete Signals	Power Spectral I	
Aly El-Osery, S	tephen Bruder	(NMT,ERAU)	EE 570: Location ar	nd Navigation	March 3, 2014	6 / 37

Rayleigh's Energy Theorem or Parseval's theorem

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(F)|^2 dF$$
(8)

Energy Spectral Density

$$G(F) \triangleq |X(F)|^2 \tag{9}$$

with units of *volts*²*-sec*² or, if considered on a per-ohm basis, *watts-sec/Hz=joules/Hz*

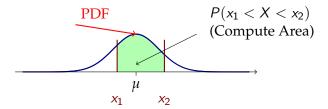
$$P = \int_{-\infty}^{\infty} S(F) dF = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(10)

where we define S(F) as the power spectral density with units of watts/Hz.

- Define an *experiment* with random *outcome*.
- Mapping of the outcome to a variable \Rightarrow random variable.
- Mapping of the outcome to a function \Rightarrow random function.

$$F_X(x) =$$
probability that $X \le x = P(X \le x)$ (11)

Describes the manner random variables take different values.


Probability Density Function (pdf)

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{12}$$

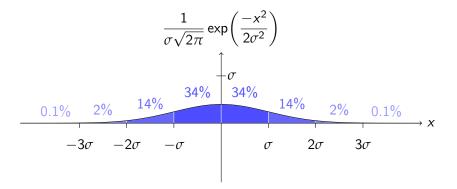
and

$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(x) dx$$
(13)

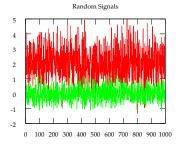
Outline			lom Signals and Noise Discrete Signals		Density
Aly El-Osery, S	itephen Bruder (NMT,	ERAU)	EE 570: Location and Navigation	March 3, 2014	11 / 37

If the random variable X takes a set of discrete values x_i with probability p_i , the pdf of X is expressed in terms of Dirac delta functions, i.e.,

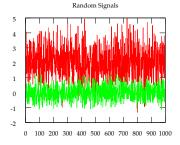
$$f_X(x) = \sum_i p_i \delta(x - x_i)$$
(14)

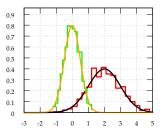


Gaussian Distribution


$$f_X(x) = \frac{1}{\sigma_x \sqrt{2\pi}} \exp\left[-\frac{x - \mu_x}{2\sigma_x^2}\right]$$
(15)

For example if $\sigma_x = \sigma$ and $\mu_x = 0$


Outline			lom Signals and Noise Discrete Signals •000000000		Density
Aly El-Osery, S	Stephen Bruder (NMT,	ERAU)	EE 570: Location and Navigation	March 3, 2014	13 / 37



Outline	Review Material 00000		lom Signals and Noise ○●00000000	Discrete Signals		Density
Aly El-Osery,	Stephen Bruder (NMT,1	ERAU)	EE 570: Location and	d Navigation	March 3, 2014	14 / 37

Histogram and Pdf of random samples

Outline			lom Signals and Noise Discrete Signals		Density
Aly El-Osery,	Stephen Bruder (NMT,	ERAU)	EE 570: Location and Navigation	March 3, 2014	14 / 37

Mean of a Discrete RV

$$\bar{X} = \mathbb{E}[X] = \sum_{j=1}^{M} x_j P_j \tag{16}$$

Mean of a Continuous RV

$$\bar{X} = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx \tag{17}$$

Variance of a RV

$$\sigma_X^2 \triangleq \mathbb{E}\left\{ [X - \mathbb{E}(X)]^2 \right\} = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$
(18)

Outline			lom Signals and Noise D			Density
Aly El-Osery, S	tephen Bruder	(NMT,ERAU)	EE 570: Location and Na	vigation	March 3, 2014	15 / 37

(20)

Given a two random variables *X* and *Y*.

Covariance

$$u_{XY} = \mathbb{E}\left\{ [X - \bar{x}][Y - \bar{Y}] \right\} = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$
(19)

Correlation Coefficient

$$\rho_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}$$

Autocorrelation

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)]$$
(21)

Outline			lom Signals and Noise 000●000000	Discrete Signals		Density
Aly El-Osery, St	tephen Bruder	(NMT,ERAU)	EE 570: Location and	Navigation	March 3, 2014	16 / 37

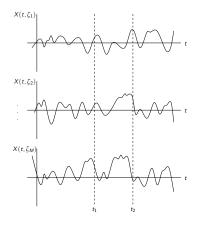


Figure : Sample functions of a random process

- $X(t, \zeta_i)$: sample function.
- The governing experiment: random or stochastic process.
- All sample functions: ensemble.
- $X(t_j, \zeta)$: random variable.

Outline			lom Signals and Noise	Discrete Signals		Density
Aly El-Osery,	Stephen Bruder (NMT,	ERAU)	EE 570: Location an	d Navigation	March 3, 2014	17 / 37

If the joint pdfs depend only on the time difference regardless of the time origin, then the random process is known as *stationary*.

For stationary process means and variances are independent of time and the covariance depends only on the time difference.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 00000
 0

If the joint pdfs depends on the time difference but the mean and variances are time-independent, then the random process is known as *wide-sense-stationary*.

If the time statistics equals ensemble statistics, then the random process is known as *ergodic*.

Any statistic calculated by averaging of all members of an ergodic ensemble at a fixed time can also be calculated by using a single representative waveform and averging over all time.

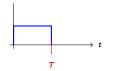
Given a sample function $X(t, \zeta_i)$ of a random process, we obtain the power spectral density by

$$S(F) \stackrel{\mathcal{F}}{\longleftrightarrow} \Gamma(\tau)$$
 (22)

i.e., for a wide sense stationary signal, the power spectral density and autocorrelation are Fourier transform pairs.

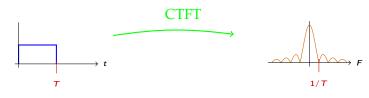
Input-Output Relationship of Linear Systems

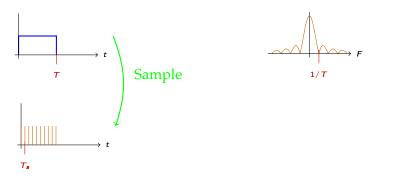
$$\xrightarrow{x(t)} H(F) \xrightarrow{y(t)}$$

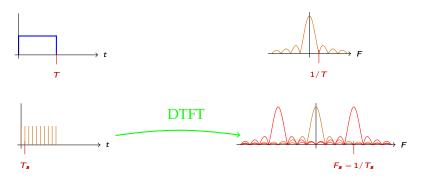

$$S_Y(F) = |H(F)|^2 S_X(F)$$
 (23)

Noise Shaping

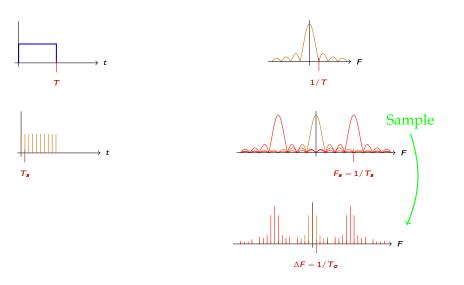
If x(t) is white noise, we can design the filter h(t) to "shape" the noise.

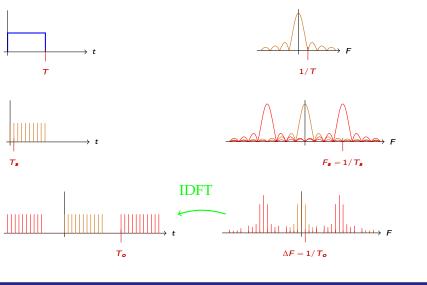






 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 00000
 000000000000
 000000000000
 March 3, 2014
 23 / 37


Outline			lom Signals and Noise Discrete Signals	and Systems		Density
Aly El-Osery, S	tephen Bruder (NMT,I	ERAU	EE 570: Location and Navigation		March 3, 2014	23 / 37

Outline	Review Material 00000		dom Signals and Noise 000000000	Discrete Signals	and Systems		Density
Aly El-Osery,	Stephen Bruder (NMT,	ERAU	EE 570: Location an	d Navigation		March 3, 2014	23 / 37

Outline			om Signals and Noise 000000000	Discrete Signals and Systems		Power Spectral Density	
Aly El-Osery, S	Stephen Bruder (NN	MT,ERAU)	EE 570: Location ar	nd Navigation		March 3, 2014	23 / 37

- Must sample more than twice bandwidth to avoid aliasing.
- FFT represents a periodic version of the time domain signal → could have time domain aliasing.
- Number of points in FFT is the same as number of points in time domain signal.

What we want is

$$\Gamma_{X}(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_{X}(F)$$

For infinitely long signals.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 25 / 37

What we want is

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_X(F)$$

For infinitely long signals.

What we can compute is

$$\gamma_X(m) = \mathbb{E}[X(n)X(n+m)] \xrightarrow{\mathcal{DFT}} P_X(f)$$

For finite length signals.

As $N \rightarrow \infty$ and in the mean squared sense

Unbiased

Asymptotically the mean of the estimate approaches the true power.

Variance

Variance of the estimate approaches zero.

Resulting in a consistent estimate of the power spectrum.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Aly El-Osery, Stephen Bruder
 (NMT,ERAU)
 EE 570: Location and Navigation
 March 3, 2014
 26 / 37

Periodogram

computed using 1/*N* times the magnitude squared of the FFT

$$\lim_{N \to \infty} \mathbb{E}[P_X(f)] = S_X(f)$$
$$\lim_{N \to \infty} var[P_X(f)] = S_X^2(f)$$

Outline			om Signals and Noise	Discrete Signals a	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT	ERAU)	EE 570: Location an	d Navigation	March 3, 2014	27 / 37

Periodogram

computed using 1/*N* times the magnitude squared of the FFT

$$\lim_{N \to \infty} \mathbb{E}[P_X(f)] = S_X(f)$$
$$\lim_{N \to \infty} var[P_X(f)] = S_X^2(f)$$

Welch Method

computed by segmenting the data (allowing overlaps), windowing the data in each segment then computing the average of the resultant priodogram

$$\mathbb{E}[P_X(f)] = \frac{1}{2\pi M U} S_X(f) \circledast W(f)$$

$$var[P_X(f)] \approx \frac{9}{8L}S_X^2(f)$$

Outline			lom Signals and Noise Discrete Signals 0000000000	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,E	RAU)	EE 570: Location and Navigation	March 3, 2014	27 / 37

Assuming data length *N*, segment length *M*, Bartlett window, and 50% overlap

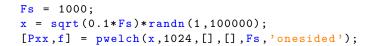
- FFT length = $M = 1.28/\Delta f = 1.28F_s/\Delta F$
- Resulting number of segments = $L = \frac{2N}{M}$
- Length of data collected in sec. = $\frac{1.28L}{2\Delta F}$

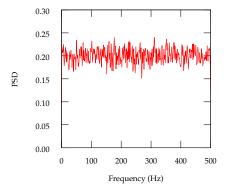
[Pxx,f] = pwelch(x,window,noverlap,... nfft,fs,'range')

You can use [] in fields that you want the default to be used.

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

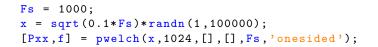
 00000
 000000000000
 000000000000
 March 3, 2014
 29 / 37

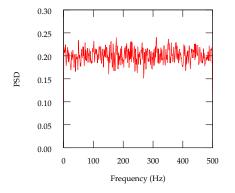


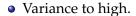

```
Fs = 1000;
x = sqrt(0.1*Fs)*randn(1,100000);
[Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');
```

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 30 / 37

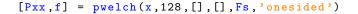


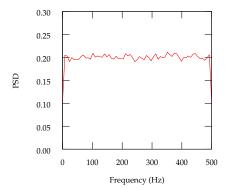




Outline	Review Material 00000		om Signals and Noise	Discrete Signals	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT	ERAU)	EE 570: Location and	Navigation	March 3, 2014	30 / 37

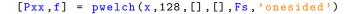
Outline			lom Signals and Noise Discrete Signals	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT,1	ERAU)	EE 570: Location and Navigation	March 3, 2014	30 / 37

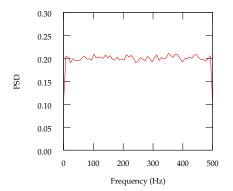



[Pxx,f] = pwelch(x,128,[],[],Fs,'onesided')

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 00000
 000000000000
 000000000000
 March 3, 2014
 31 / 37

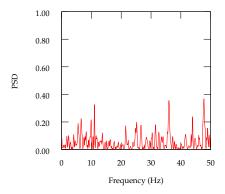




Outline	Review Material 00000		lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT,	ERAU)	EE 570: Location at	nd Navigation	March 3, 2014	31 / 37

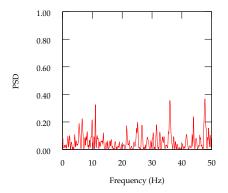
- Reduced window size.
- Variance is now smaller.

Outline			lom Signals and Noise Discrete Signal 000000000	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,1	ERAU)	EE 570: Location and Navigation	March 3, 2014	31 / 37



Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

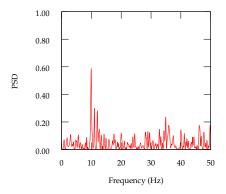
 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 32 / 37

Outline	Review Material 00000		lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,	ERAU)	EE 570: Location and	Navigation	March 3, 2014	32 / 37

- Window larger than length of data.
- Frequency components can't be resolved.
- Variance high.

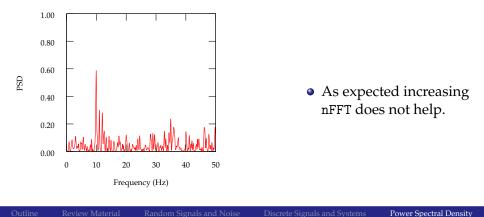
Outline			lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT,	ERAU)	EE 570: Location at	nd Navigation	March 3, 2014	32 / 37



Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density

 Aly El-Osery, Stephen Bruder
 (NMT,ERAU)
 EE 570: Location and Navigation
 March 3, 2014
 33 / 37

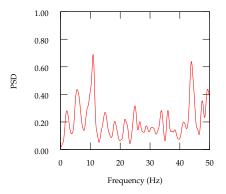

Outline	Review Material 00000		lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,	ERAU)	EE 570: Location ar	nd Navigation	March 3, 2014	33 / 37

Aly El-Osery, Stephen Bruder (NMT, ERAU)

March 3, 2014

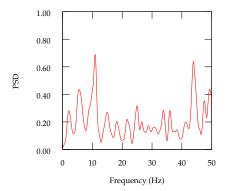
33 / 37

EE 570: Location and Navigation



Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

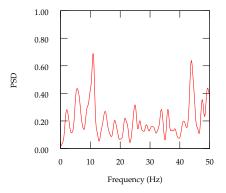
 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 34 / 37

Outline	Review Material 00000		lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery, S	tephen Bruder (NMT,	ERAU)	EE 570: Location an	d Navigation	March 3, 2014	34 / 37

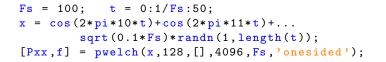
- Decreasing the window size decreases the variance.
- Still can't resolve the two frequencies.

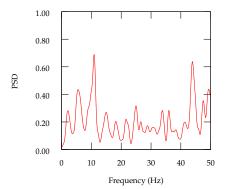
Outline			om Signals and Noise	Discrete Signals	Power Spectral	Density
Aly El-Osery,	Stephen Bruder (NMT	,ERAU)	EE 570: Location ar	nd Navigation	March 3, 2014	34 / 37



Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

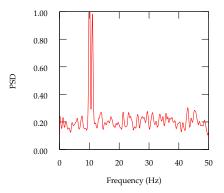
 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 35 / 37

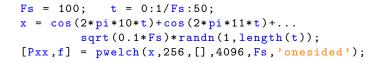


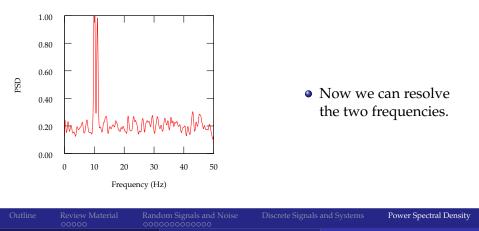
Outline	Review Material 00000		lom Signals and Noise 000000000	Discrete Signals	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,I	ERAU)	EE 570: Location and N	Javigation	March 3, 2014	35 / 37

- Length of data sequence must be increased.
- Still can't resolve the two frequencies as the window size is too small.


Outline			lom Signals and Noise 000000000	Discrete Signals and Systems		Power Spectral Density	
Aly El-Osery,	Stephen Bruder (NMT,ERAU)	EE 570: Location a	nd Navigation		March 3, 2014	35 / 37

 Outline
 Review Material
 Random Signals and Noise
 Discrete Signals and Systems
 Power Spectral Density


 Outline
 00000
 00000000000
 00000000000
 March 3, 2014
 36 / 37



Outline	Review Material 00000		om Signals and Noise	Discrete Signals	Power Spectral	Density
Aly El-Osery, S	Stephen Bruder (NMT,	ERAU)	EE 570: Location and	l Navigation	March 3, 2014	36 / 37

Aly El-Osery, Stephen Bruder (NMT, ERAU) EE 570: Location and Navigation

March 3, 2014 36 / 37

- The length of the data sequence determines the maximum resolution that can be observed.
- Increasing the window length of each segment in the data increases the resolution.
- Decreasing the window length of each segment in the data decreases the variance of the estimate.
- nFFT only affects the amount of details shown and not the resolution.