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Motivation

Sensors suffer from noise effects that can not be removed through
calibration, consquently, we need to

understand the nature of the noise

be able to extract parameters from actual data

develop models to mimic noise in simulation to provide
performance capabilities
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.
Practice

Finite length.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Practice

Finite length.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Practice

Finite length.

Discrete in time and value.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Provides true distribution
of power.

Practice

Finite length.

Discrete in time and value.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Provides true distribution
of power.

Practice

Finite length.

Discrete in time and value.

Only approximation of
distribution of power.
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Provides true distribution
of power.

Practice

Finite length.

Discrete in time and value.

Only approximation of
distribution of power.

Let’s make it more interesting
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Purpose

Estimate the distribution of power in a signal. Unfortunately, truth
and what is practical cause a problem.

Truth

Infinitely long.

Continuous in time and
value.

Provides true distribution
of power.

Practice

Finite length.

Discrete in time and value.

Only approximation of
distribution of power.

Let’s make it more interesting

The signal is stochastic in nature.
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Energy and Power

Assume the voltage across a resistor R is e(t) and is producing a
current i(t). The instantaneous power per ohm is
p(t) = e(t)i(t)/R = i2(t).

Total Energy

E = lim
T→∞

∫ T

−T
i2(t)dt (1)

Average Power

P = lim
T→∞

1

2T

∫ T

−T
i2(t)dt (2)
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Arbitrary signal x(t)

Total Normalized Energy

E , lim
T→∞

∫ T

−T
|x(t)|2dt =

∫ ∞

−∞
|x(t)|2dt (3)

Normalized Power

P , lim
T→∞

1

2T

∫ T

−T
|x(t)|2dt (4)
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Correlation

For Energy Signals

φ(τ) =
∫ ∞

−∞
x(t)x(t + τ)dt (5)

For Power Signals

R(τ) = lim
T→∞

1

2T

∫ T

−T
x(t)x(t + τ)dt (6)

For Periodic Signals

R(τ) =
1

T0

∫

T0

x(t)x(t + τ)dt (7)
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Energy Spectral Density

Rayleigh’s Energy Theorem or Parseval’s theorem

E =
∫ ∞

−∞
|x(t)|2dt =

∫ ∞

−∞
|X (F )|2dF (8)

Energy Spectral Density

G (F ) , |X (F )|2 (9)

with units of volts2-sec2 or, if considered on a per-ohm basis,
watts-sec/Hz=joules/Hz
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Power Spectral Density

P =
∫ ∞

−∞
S(F )dF = lim

T→∞

1

2T

∫ T

−T
|x(t)|2dt (10)

where we define S(F ) as the power spectral density with units of
watts/Hz.
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Basic Definitions

Define an experiment with random outcome.

Mapping of the outcome to a variable⇒ random variable.

Mapping of the outcome to a function⇒ random function.
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Probability (Cumulative) Distribution Function (cdf)

FX (x) = probability that X ≤ x = P(X ≤ x) (11)

Describes the manner random variables take different values.
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Probability Density Function (pdf)

fX (x) =
dFX (x)

dx
(12)

and

P(x1 < X ≤ x2) = FX (x2)− FX (x1) =
∫ x2

x1

fX (x)dx (13)

x1 x2

µ

P(x1 < X < x2)
(Compute Area)

PDF
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PDF of Discrete Random Variables

If the random variable X takes a set of discrete values xi with
probability pi , the pdf of X is expressed in terms of Dirac delta
functions, i.e.,

fX (x) = ∑
i

pi δ(x − xi ) (14)
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Gaussian Distribution

fX (x) =
1

σx

√
2π

exp

[

−x − µx

2σ2
x

]

(15)

For example if σx = σ and µx = 0

1

σ
√

2π
exp

(−x2

2σ2

)

x

−3σ −2σ −σ σ 2σ 3σ

σ
34%34%

14%14% 2%2% 0.1%0.1%
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PDF of White Noise
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PDF of White Noise
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Mean and Variance

Mean of a Discrete RV

X̄ = E[X ] =
M

∑
j=1

xjPj (16)

Mean of a Continuous RV

X̄ = E[X ] =
∫ ∞

−∞
xfX (x)dx (17)

Variance of a RV

σ2

X , E
{

[X −E(X )]2
}

= E[X 2]−E
2[X ] (18)
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Covariance and Autocorrelation

Given a two random variables X and Y .

Covariance

µXY = E {[X − x̄ ][Y − Ȳ ]} = E[XY ]−E[X ]E[Y ] (19)

Correlation Coefficient

ρXY =
µXY

σX σY

(20)

Autocorrelation

ΓX (τ) = E[X (t)X (t + τ)] (21)
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Terminology

.

.

.

t

t

t

X (t, ζ1)

X (t, ζ2)

X (t, ζM)

t1 t2

Figure : Sample functions of a random
process

X (t, ζi ): sample function.

The governing experiment:
random or stochastic process.

All sample functions:
ensemble.

X (tj , ζ): random variable.
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Strict Sense Stationarity

If the joint pdfs depend only on the time difference regardless of the
time origin, then the random process is known as stationary.

For stationary process means and variances are independent of time
and the covariance depends only on the time difference.
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Wide Sense Stationarity

If the joint pdfs depends on the time difference but the mean and
variances are time-independent, then the random process is known as
wide-sense-stationary.
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Ergodicity

If the time statistics equals ensemble statistics, then the random
process is known as ergodic.

Any statistic calculated by averaging of all members of an ergodic
ensemble at a fixed time can also be calculated by using a single
representative waveform and averging over all time.
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Power Spectral Density

Given a sample function X (t, ζi ) of a random process, we obtain the
power spectral density by

S(F )
F←→ Γ(τ) (22)

i.e., for a wide sense stationary signal, the power spectral density and
autocorrelation are Fourier transform pairs.
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Input-Output Relationship of Linear Systems

H(F )
x(t) y(t)

SY (F ) = |H(F )|2SX (F ) (23)

Noise Shaping

If x(t) is white noise, we can design the filter h(t) to “shape” the noise.
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Big Picture

t

T
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Big Picture

t

T

F

1/T

CTFT
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Big Picture
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Big Picture

t

T

F

1/T
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Fs = 1/Ts

DTFT
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Big Picture
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Big Picture
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Sampling Remarks

Must sample more than twice bandwidth to avoid aliasing.

FFT represents a periodic version of the time domain signal→
could have time domain aliasing.

Number of points in FFT is the same as number of points in time
domain signal.
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Obtaining PSD for Discrete Signals

What we want is

ΓX (τ) = E[X (t)X (t + τ)]
CT FT−−−→ SX (F )

For infinitely long signals.
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Obtaining PSD for Discrete Signals

What we want is

ΓX (τ) = E[X (t)X (t + τ)]
CT FT−−−→ SX (F )

For infinitely long signals.

What we can compute is

γX (m) = E[X (n)X (n +m)]
DFT−−−→ PX (f )

For finite length signals.
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What do we need in an estimate

As N → ∞ and in the mean squared sense

Unbiased

Asymptotically the mean of the estimate approaches the true power.

Variance

Variance of the estimate approaches zero.

Resulting in a consistent estimate of the power spectrum.

Outline Review Material Random Signals and Noise Discrete Signals and Systems Power Spectral Density

Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 3, 2014 26 / 37



Possible PSD Options

Periodogram

computed using 1/N

times the magnitude
squared of the FFT

lim
N→∞

E[PX (f )] = SX (f )

lim
N→∞

var [PX (f )] = S2

X (f )
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Possible PSD Options

Periodogram

computed using 1/N

times the magnitude
squared of the FFT

lim
N→∞

E[PX (f )] = SX (f )

lim
N→∞

var [PX (f )] = S2

X (f )

Welch Method

computed by segmenting the data
(allowing overlaps), windowing
the data in each segment then
computing the average of the
resultant priodogram

E[PX (f )] =
1

2πMU
SX (f )⊛W (f )

var [PX (f )] ≈
9

8L
S2

X (f )

Outline Review Material Random Signals and Noise Discrete Signals and Systems Power Spectral Density

Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 3, 2014 27 / 37



Welch Method

Assuming data length N , segment length M , Bartlett window, and 50%
overlap

FFT length = M = 1.28/∆f = 1.28Fs/∆F

Resulting number of segments = L = 2N
M

Length of data collected in sec. = 1.28L
2∆F
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pwelch Function

[Pxx,f] = pwelch(x,window,noverlap,...

nfft,fs,’range’)

You can use [] in fields that you want the default to be used.
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pwelch Function - WGN signal

Fs = 1000;

x = sqrt (0.1* Fs)*randn (1 ,100000);

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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pwelch Function - WGN signal

Fs = 1000;

x = sqrt (0.1* Fs)*randn (1 ,100000);

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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pwelch Function - WGN signal

Fs = 1000;

x = sqrt (0.1* Fs)*randn (1 ,100000);

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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Variance to high.
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pwelch Function - WGN signal

[Pxx ,f] = pwelch(x,128,[],[],Fs,’onesided ’)
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pwelch Function - WGN signal

[Pxx ,f] = pwelch(x,128,[],[],Fs,’onesided ’)
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pwelch Function - WGN signal

[Pxx ,f] = pwelch(x,128,[],[],Fs,’onesided ’)
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Reduced window size.

Variance is now
smaller.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,[] ,Fs,’onesided ’);
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Window larger than
length of data.

Frequency components
can’t be resolved.

Variance high.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,4096 ,Fs,’onesided ’);

Outline Review Material Random Signals and Noise Discrete Signals and Systems Power Spectral Density

Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 3, 2014 33 / 37



pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,1024 ,[] ,4096 ,Fs,’onesided ’);
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As expected increasing
nFFT does not help.

Outline Review Material Random Signals and Noise Discrete Signals and Systems Power Spectral Density

Aly El-Osery, Stephen Bruder (NMT,ERAU) EE 570: Location and Navigation March 3, 2014 33 / 37



pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:5;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);

0.00

0.20

0.40

0.60

0.80

1.00

0 10 20 30 40 50

P
S

D

Frequency (Hz)

Decreasing the window
size decreases the
variance.

Still can’t resolve the
two frequencies.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,128 ,[] ,4096 ,Fs,’onesided ’);
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Length of data
sequence must be
increased.

Still can’t resolve the
two frequencies as the
window size is too
small.
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,256 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,256 ,[] ,4096 ,Fs,’onesided ’);
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pwelch Function - cos + WGN signal

Fs = 100; t = 0:1/Fs:50;

x = cos (2*pi*10*t)+cos(2*pi*11*t)+...

sqrt (0.1* Fs)*randn(1,length(t));

[Pxx ,f] = pwelch(x,256 ,[] ,4096 ,Fs,’onesided ’);
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Now we can resolve
the two frequencies.
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Spectral Estimation - Remarks

The length of the data sequence determines the maximum
resolution that can be observed.

Increasing the window length of each segment in the data
increases the resolution.

Decreasing the window length of each segment in the data
decreases the variance of the estimate.

nFFT only affects the amount of details shown and not the
resolution.
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