1. In class, we developed the basic (elementary) rotation matrix

$$
C_{z, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & -\sin (\theta) & 0 \\
\sin (\theta) & \cos (\theta) & 0 \\
0 & 0 & 1
\end{array}\right]
$$

that describes the orientation of a coordinate frame rotated away from another coordinate frame by an angle θ about the z-axis.
(a) Derive the basic (elementary) rotation matrix $C_{y, \theta}$ that describes the orientation of a coordinate frame rotated away from another coordinate frame by an angle θ about the y-axis.
(b) Derive the basic (elementary) rotation matrix $C_{x, \theta}$ that describes the orientation of a coordinate frame rotated away from another coordinate frame by an angle θ about the x-axis.
2. For each of the matrices below, determine which are valid rotation matrices. Justify your answer based upon expected properties.
(a) $C_{b}^{a}=\left[\begin{array}{rrr}0 & 0 & 1 \\ 0 & 1 & 0 \\ -1 & 0 & 0\end{array}\right]$
(b) $C_{c}^{b}=\left[\begin{array}{rrr}1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(c) $C_{d}^{c}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & \frac{1}{2} & 0 \\ 0 & 0 & 2\end{array}\right]$
(d) $C_{e}^{d}=\left[\begin{array}{rrr}0.4330 & -0.7718 & 0.4656 \\ 0.7500 & 0.5950 & 0.2888 \\ -0.5000 & 0.2241 & 0.8365\end{array}\right]$
(e) $C_{f}^{e}=\left[\begin{array}{rrr}0 & 0 & -\frac{1}{4} \\ -1 & \sqrt{3} & 0 \\ \sqrt{3} & 1 & 0\end{array}\right]$
3. Consider the rotation matrix

$$
C_{1}^{0}=\left[\begin{array}{rrr}
0 & 0 & -1 \\
-\frac{1}{2} & \frac{\sqrt{3}}{2} & 0 \\
\frac{\sqrt{3}}{2} & \frac{1}{2} & 0
\end{array}\right]
$$

(a) Sketch frames 0 and 1 with their origins co-located.
(b) Given a vector $\vec{v}^{0}=[1,1,1]^{T}$ coordinatized in frame 0 , re-coordinatize the vector such that it is described relative to frame 1.
4. For each pair of coordinate frames shown, find the rotation matrix C_{b}^{a} that describes their relative orientation.
(a)

(b)

