1. Describe each of the following rotations using roll-pitch-yaw angles (ϕ, θ, ψ), angleaxis (θ, \vec{k}) and quaternion \bar{q}.
(a) no rotation
(b) rotation about x by 90°
(c) rotation about y by 180°
(d) rotation about z by -90°
2. Consider the quaternion $\bar{q}_{x, 90^{\circ}}$ that describes a rotation about the x -axis by 90°.
(a) Show the opposite rotation $\bar{q}_{x,-90^{\circ}}$ is its inverse (conjugate) using the definition.
(b) Compose $\bar{q}_{x, 90^{\circ}}$ with $\bar{q}_{x,-90^{\circ}}$ via multiplication (\otimes) on the left and right. Do both yield the identity quaternion?
(c) Given $\bar{q}_{1}^{0}=\bar{q}_{x,-90^{\circ}}$ describes the orientation of frame $\{1\}$ relative to frame $\{0\}$, recoordinatize the vector $\vec{v}^{1}=[1,1,1]^{T}$ in frame $\{0\}$, i.e., use the quaternion to find \vec{v}^{0}.
3. How many multiplies and additions are needed for each of the following computations?
(a) composition of rotations via rotation matrices, $C_{1}^{2} C_{0}^{1}$
(b) composition of rotations via quaternions, $\bar{q}_{1}^{2} \otimes \bar{q}_{0}^{1}$
(c) recoordinatization of a vector via rotation matrix, $C_{1}^{2} \vec{r}^{1}$
(d) recoordinatization of a vector via quaternion, $\bar{q}_{1}^{2} \otimes \breve{r}^{1} \otimes\left(\bar{q}_{1}^{2}\right)^{-1}$
4. Consider the time-varying rotation matrix $C_{b}^{a}=R_{z, \theta(t)}$ that describes the orientation of frame $\{b\}$ as it rotates about frame $\{a\}$'s z-axis by angle $\theta(t)$. Determine the angular velocity as a skew-symmetric matrix (via $\Omega_{a b}^{a}=\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}$) and vector $\vec{\omega}_{a b}^{a}$. Do these answers make sense in light of the type of rotation between the frames?
5. Consider the time-varying coordinate transformation matrix C_{b}^{n} given below that describes the orientation of the body frame as it rotates with respect to the navigation frame.

$$
C_{b}^{n}=\left[\begin{array}{ccc}
\cos (t) & \sin (t) \sin \left(t^{2}\right) & \sin (t) \cos \left(t^{2}\right) \\
0 & \cos \left(t^{2}\right) & -\sin \left(t^{2}\right) \\
-\sin (t) & \cos (t) \sin \left(t^{2}\right) & \cos (t) \cos \left(t^{2}\right)
\end{array}\right]
$$

(a) Determine the analytic form of the time-derivative of C_{b}^{n} (i.e., $\dot{C}_{b}^{n}=\frac{d C_{b}^{n}}{d t}$) via a term-by-term differentiation.
(b) Develop MATLAB functions that accept " t " (i.e., time) as a numerical input and return C_{b}^{n} and \dot{C}_{b}^{n}, respectively, as numerical outputs.
(c) Using the C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=0 \mathrm{sec}$ (Hint: you might want to compute $\Omega_{n b}^{n}$ first).
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(d) Using the C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=0.5 \mathrm{sec}$.
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(e) Using C_{b}^{n} and \dot{C}_{b}^{n} functions from above, compute the angular velocity vector $\vec{\omega}_{n b}^{n}$ at time $t=1 \mathrm{sec}$.
i. What is the magnitude (i.e., $\dot{\theta}$, angular speed) of the angular velocity?
ii. About what unit vector $\left(\vec{k}_{n b}^{n}\right)$ has the instantaneous rotation occurred?
(f) In practice, direct measurement of the angular velocity vector $\vec{\omega}_{n b}^{n}$ can prove challenging, so a finite-difference approach may be taken given two sequential orientations represented by $C_{b}^{n}(t)$ and $C_{b}^{n}(t+\Delta t)$ a small time Δt apart. Consider the approximate value of the angular velocity vector $\vec{\omega}_{n b}^{n}$ derived by using the finite difference

$$
\dot{C}_{b}^{n}(t) \approx \frac{C_{b}^{n}(t+\Delta t)-C_{b}^{n}(t)}{\Delta t}
$$

at times $t=0,0.5$, and 1 sec . Compare the "analytic" values for $\dot{\theta}$ and $\vec{k}_{n b}^{n}$ (found in parts b, c and d) with your approximations from the finite difference using $\Delta t=0.1 \mathrm{sec}$. How large are the errors?
(g) How small does the sampling time (i.e., Δt) need to be to get a "good" (better than 99.9%) approximation of the angular speed (i.e., $\dot{\theta}$)?
6. Consider the three coordinate frames $\{\alpha\},\{\beta\}$, and $\{\gamma\}$ shown in the diagram below. Following the notation introduced in the class, find the following Cartesian position vectors (denoted by \vec{r}).
(a) $\vec{r}_{\gamma \alpha}^{\gamma}$
(b) $\vec{r}_{\gamma \beta}^{\gamma}$
(c) $\vec{r}_{\beta \alpha}^{\beta}$ by appropriately adding vectors in parts (a) and (b)

