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1 Overview

1.1 ECEF as and Example

Notation Used

• Truth value
~x

• Measured value
~̃x

• Estimated or computed value
~̂x

• Error
δ~x = ~x− ~̂x
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1.2 Inertial Measurements

Actual Measurements
Initially the accelerometer and gyroscope measurements, ~̃f bib and ~̃ω b

ib, respectively, will
be modeled as

~̃f bib = ~f bib + ∆~f bib = ~̂f bib + ∆ ~̂f bib (1)

~̃ω b
ib = ~ω b

ib + ∆~ω b
ib = ~̂ω b

ib + ∆~̂ω b
ib (2)

where ~f bib and ~ω b
ib are the specific force and angular rates, respectively; and ∆~f bib and

∆~ω b
ib represents the errors. In later lectures we will discuss more detailed description of

these errors. .3

Error Modeling Example
Accelerometers

~̃f bib = ~ba + (I +Ma)~f bib + ~nla + ~wa (3)
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Gyroscopes
~̃ω b
ib = ~bg + (I +Mg)~ω

b
ib +Gg ~f

b
ib + ~wg (4)
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Pos, Vel, Force and Angular Rate Errors

• Position error
δ~r γβb = ~r γβb − ~̂r

γ
βb (5)

• Velocity error
δ~v γβb = ~v γβb − ~̂v

γ
βb (6)

• Specific force errors
δ ~f bib = ~f bib − ~̂f bib (7)

∆e
~f bib = ∆~f bib −∆ ~̂f bib = −δ ~f bib (8)

• Angular rate errors
δ~ω b

ib = ~ω b
ib − ~̂ω b

ib (9)

∆e~ω
b
ib = ∆~ω b

ib −∆~̂ω b
ib = −δ~ω b

ib (10)
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ECEF Error Mechanization
Recall δ ~̇ψ e

eb

δ~̇v eeb
δ~̇r eeb

 =

 −Ωeie 03×3 03×3

−[Ĉeb
~̂f bib×] −2Ωeie

2g0(L̂b)

reeS(L̂b)

~̂reeb
|~̂reeb|2

(~̂reeb)
T

03×3 I3×3 03×3


δ ~ψ e

eb

δ~v eeb
δ~r eeb

+

 0 −Ĉeb
−Ĉeb 0

0 0

(∆e
~f bib

∆e~ω
b
ib

) (11)
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Errors After Calibration
In reality there will be error terms in the sensor that can not be calibrated. These terms

may be estimated. The error in the estimation of these terms may be expressed as

∆e
~f bib = ∆~f bib −∆ ~̂f bib = Fvaδ~xa + ~ςa (12)

∆e~ω
b
ib = ∆~ω b

ib −∆~̂ω b
ib = Fψgδ~xg + ~ςg (13)

These terms represent the difference between what we estimate the errors in the sensors
to be (either through calibration or online estimation) and the actual errors in the sensor. .7

Error Terms
The matrics Fva and Fψg , depend on the needed level of complexity in modeling the

errors. For example if we only model biases, e.g., δ~xa = δ~ba, then Fva = I .
If more error terms are modeled, then most likely, we will end up with non-linear equa-

tions, and therefore linearization is necessary. .8

Error Modeling

δ~̇xa = Faaδ~xa + ~wa (14)
δ~̇xg = Fggδ~xg + ~wg (15)

The matrics Faa and Fgg are specific to accelerometers and the gyroscopes and there
specific configuration within the IMU. .9
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State Augmentation
After state augmentation

δ ~̇ψ e
eb

δ~̇v eeb

δ~̇r eeb

δ~̇xa

δ~̇xg


=



−Ωeie 03×3 03×3 03×3 −ĈebFψg
−[Ĉeb

~̂f bib×] −2Ωeie
2g0(L̂b)

reeS(L̂b)

~̂reeb
|~̂reeb|2

(~̂reeb)
T −ĈebFva 03×3

03×3 I3×3 03×3 03×3 03×3

03×3 03×3 03×3 Faa 03×3

03×3 03×3 03×3 03×3 Fgg





δ ~ψ e
eb

δ~v eeb

δ~r eeb

δ~xa

δ~xg


+



−Ĉeb 03×3 03×3 03×3 03×3

03×3 −Ĉeb 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

03×3 03×3 03×3 03×3 I3×3





~ςg

~ςa

03×1

~wa

~wg


= F (t)~x+G~w

(16)
.10

1.3 Background

Need for Integration

Mechanization
Equations

Gyros

Accelero-
meters

~ωbib

~f b

IMU

INS

Advantages Disadvantages
Immune to RF Jaming Drifts

High data rate Errors are time dependent
High accuracy in short term Need Initialization

Aiding Sensor (e.g., GPS)

http://nptel.ac.in/courses/105104100/lectureB_11/B_11_3GDOP.htm

Advantages Disadvantages
Errors time-indep. Sensitive to RF Interference
No initialization No attitude information

Velocity
~v

Attitude
C

Position
~r

+

Aided INS
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2 Integration Architectures

Open-Loop Integration
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Aiding Sensors

INS

Filter

Correct INS Output
True PVA + errors

True PVA + errors Aiding sensors errors - INS errors

Inertial
errors
est.

+

+

−

+
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Closed-Loop Integration
If error estimates are fedback to correct the INS mechanization, a reset of the state

estimates becomes necessary.

Aiding Sensors

INS INS Correction

Filter

Correct INS Output

+

−
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3 Integration Filter

Kalman Filter

~̂xk|k−1 = Φk−1~̂xk−1|k−1 (17)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (18)

~̂xk|k = ~̂xk|k−1 + Kk(~zk −Hk~̂xk|k−1) (19)

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T

+KkRkK
T
k (20)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (21)
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Closed-Loop Kalman Filter
Since the errors are being fedback to correct the INS, the state estimate must be reset

after each INS correction.
~̂xk|k−1 = 0 (22)

Pk|k−1 = Qk−1 + Φk−1Pk−1|k−1Φ
T
k−1 (23)

~̂xk|k = Kk~zk (24)

Pk|k = (I −KkHk)Pk|k−1 (I −KkHk)
T

+KkRkK
T
k (25)

Kk = Pk|k−1H
T
k (HkPk|k−1H

T
k + Rk)−1 (26)
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Discretization

Φk−1 ≈ I + F∆t (27)

Q =



n2rgI3×3 03×3 03×3 03×3 03×3

03×3 n2agI3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 n2badI3×3 03×3

03×3 03×3 03×3 03×3 n2bgdI3×3


(28)

where ∆t is the sample time, n2rg , n2ag , n2bad, n2bgd are the PSD of the gyro and accel random
noise, and accel and gyro bias variation, respectively. .16

Discrete Covariance Matrix Qk

Assuming white noise, small time step, G is constant over the integration period, and
the trapezoidal integration

Qk−1 ≈
1

2

[
Φk−1Gk−1Q(tk−1)GT

k−1Φ
T
k−1 + Gk−1Q(tk−1)GT

k−1
]

∆t (29)
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