EE 565: Position, Navigation and Timing
 Error Modeling

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
March 26, 2018

Given a state space system

$$
\begin{equation*}
\dot{\vec{x}}(t)=F(t) \vec{x}(t)+G(t) \vec{w}(t) \tag{1}
\end{equation*}
$$

and the measurement equation

$$
\begin{equation*}
\vec{y}(t)=H(t) \vec{x}(t)+\vec{v}(t) \tag{2}
\end{equation*}
$$

If \vec{w} and \vec{v} are Gaussian random processes, then the system above is known as Gauss-Markov process. This process is used to describe a variety of error models of interest. Particularly,

- random constant,
- random walk, and
- first order Markov.

Assuming that the error is due to an unknown constant (i.e. random constant), the following model is used

$$
\begin{equation*}
\dot{\vec{x}}(t)=0 \tag{3}
\end{equation*}
$$

This model is useful in describing effects such as bias stability, scale factor errors, and misalignments. The value can vary from turn-on to turn-on.

An INS system requires the integration of accel and gyro measurements. This leads to the Gauss-Markov process

$$
x(t)=\int_{0}^{t} w(\nu) d \nu \Rightarrow \dot{x}=w(t)
$$

with

$$
\begin{gathered}
\mathbb{E}\{w(t)\}=0 \\
\mathbb{E}\{w(t) w(t+\tau)\}=Q \delta(\tau) \\
\mathbb{E}\{x(t)\}=0 \\
\mathbb{E}\left\{x^{2}(t)\right\}=Q t
\end{gathered}
$$

called random walk.

- In the case of the gyroscope, w would be in the rate domain and thus has units of $\mathrm{deg} / \mathrm{s}$ and the units of $x(t)$ is degrees.
- $\mathbb{E}\left\{x^{2}(t)\right\}=Q t$ has units of $d e g^{2}$.
- Therefore, Q has the units of $\frac{\mathrm{deg}^{2}}{s}=\frac{(\mathrm{deg} / \mathrm{s})^{2}}{\mathrm{~Hz}}$ which is the PSD level of the gyro white noise.
- This matches the units in Eq. 5 (Note that $\delta(\tau)$ has units of $1 /$ time).
- In simulation the power of the white noise w that is experienced by the system is $F_{s} Q$, where F_{s} is the sampling rate.
- Consquently, $\sigma_{w}=\sqrt{F_{s} Q}$ and has the units of $\mathrm{deg} / \mathrm{s}$
- Recall that the gyro angle random walk (ARW)

$$
\begin{equation*}
A R W\left({ }^{\circ} / \sqrt{h}\right)=\frac{1}{60} \sqrt{P S D\left((\circ / h)^{2} / H z\right)} \tag{6}
\end{equation*}
$$

First Order Markov Noise

Frequently used to model bias instability (BI)

State Equation

$$
\begin{equation*}
\dot{b}(t)=-\frac{1}{T_{c}} b(t)+w(t) \tag{7}
\end{equation*}
$$

Autocorrelation

$$
\begin{equation*}
\mathbb{E}\{b(t) b(t+\tau)\}=\sigma_{B I}^{2} e^{-|\tau| / T_{c}} \tag{8}
\end{equation*}
$$

where

$$
\begin{gather*}
\mathbb{E}\{w(t) w(t+\tau)\}=Q \delta(t-\tau) \\
Q=\frac{2 \sigma_{B I}^{2}}{T_{c}} \tag{10}
\end{gather*}
$$

and T_{c} is the correlation time.

State Equation

$$
\begin{equation*}
b_{k}=e^{-\frac{1}{T_{c}} \tau_{s}} b_{k-1}+w_{k-1} \tag{11}
\end{equation*}
$$

Covariance Matrix of the discrete Markov Noise

$$
\begin{equation*}
Q_{d}=\sigma_{B /}^{2}\left[1-e^{-\frac{2}{T_{c}} \tau_{s}}\right] \tag{12}
\end{equation*}
$$

