EE 565: Position, Navigation and Timing
 Navigation Mathematics: Coordinate Frames

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
January 23, 2018

Right-hand coordinate frame α has
(1) origin o_{α} at which frame is located, and
(2) orthonormal vectors $x_{\alpha}, y_{\alpha}, z_{\alpha}$ that serve as axes and indicate positive directions.

This definition implies

$$
\begin{gathered}
x_{\alpha} \cdot x_{\alpha}=y_{\alpha} \cdot y_{\alpha}=z_{\alpha} \cdot z_{\alpha}=1 \\
x_{\alpha} \cdot y_{\alpha}=y_{\alpha} \cdot z_{\alpha}=z_{\alpha} \cdot x_{\alpha}=0 \\
x_{\alpha} \times y_{\alpha}=z_{\alpha} \\
y_{\alpha} \times z_{\alpha}=x_{\alpha} \\
z_{\alpha} \times x_{\alpha}=y_{\alpha}
\end{gathered}
$$

Coordinate Frames

Coordinate frames used as means to describe position and orientation/attitude of one frame with respect to another.

ECI Frame

- defined as an inertial frame, i.e., it is assumed not to accelerate or rotate with respect to the universe
- effects of earth's orbit around sun and motion of the galaxy are very small (smaller than can be measured with inertial sensors) and neglected
- ECI will be attached to earth, but won't spin with earth
- inertial sensors measure "inertial" motion relative to ECI frame
- Gyroscopes measure rate of change of orientation
- Accelerometers measure linear acceleration
- referred to as i-frame
- origin o_{i} of ECl is located near the center of mass (center of ellipsoidal representation) of the earth
- z_{i}-axis points along the nominal axis of rotation of the earth
- true north not magnetic north!
- spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value
- x_{i}-axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
- defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_{i}-axis chosen to complete right hand coordinate system $\left(90^{\circ}\right.$ ahead of x_{i} in direction of earth's rotation)

Frames	ECI	ECEF	Nav	Body
Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	January 23, 2018	$6 / 18$

- origin o_{i} of ECl is located near the center of mass (center of ellipsoidal representation) of the earth
- z_{i}-axis points along the nominal axis of rotation of the earth
- true north not magnetic north!
- spin axis moves in circular path with radius of 15 meters, which we'll neglect and use average value
- x_{i}-axis lies in the equatorial plane and points from the earth to the sun at the vernal (spring) equinox
- defined by the intersection (a line) of the equatorial plane and the earth-sun orbital plane
- y_{i}-axis chosen to complete right hand coordinate system $\left(90^{\circ}\right.$ ahead of x_{i} in direction of earth's rotation)

> The ECI coordinate frame does not rotate with the earth

Seasonal configuration

hudsonvalleygeologist.blogspot.com/

Equatorial Plane

- o_{i} at earth's center

- o_{i} at earth's center
- z_{i}-axis points along the earth's axis of rotation

ECI Frame

- o_{i} at earth's center
- z_{i}-axis points along the earth's axis of rotation
- x_{i}-axis points towards sun at vernal (spring) equinox

ECI Frame

- oo at earth's center
- z_{i}-axis points along the earth's axis of rotation
- x_{i}-axis points towards sun at vernal (spring) equinox
- y_{i}-axis completes a right hand coordinate system

Seasonal configuration Seasonal configuration and Sun
of Earth

ECEF Frame

- not an inertial frame
- fixed with respect to the earth, i.e., attached to the earth and spins with earth
- referred to as e-frame

Frames	ECI	ECEF	Nav	Body
Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	January 23, 2018	
18				

- origin o_{e} is located (nearly) at the center of the mass of the earth (co-located with ECl's o_{i})
- z_{e}-axis points along the nominal axis of earth's rotation (same as ECI's z_{i})
- x_{e}-axis lies at the intersection of the equatorial plane and the reference meridian plane (i.e., Greenwich/Prime Meridian)
- tied to concept of latitude and longitude
- x_{e} points from o_{e} towards 0° longitude and 0° latitude (a little west of central Africa)
- y_{e}-axis is chosen to complete right hand coordinate system

ECEF Frame

- z_{e}-axis points along axis of earth's rotation

- z_{e}-axis points along axis of earth's rotation
- x_{e}-axis points towards zero latitude and zero longitude

- z_{e}-axis points along axis of earth's rotation
- x_{e}-axis points towards zero latitude and zero longitude
- y_{e}-axis completes right hand coordinate system

- z_{e}-axis points along axis of earth's rotation
- x_{e}-axis points towards zero latitude and zero longitude
- y_{e}-axis completes right hand coordinate system
- NMT's (lat, long) \approx $\left(34.07^{\circ},-106.9^{\circ}\right)=$ $\left(34.07^{\circ}, 253.1^{\circ}\right)$

Nav Frame

- typically not fixed with respect to the earth, i.e., free to move, but has specified orientation
- also called geodetic, geographic, locally level, or tangential frame
- referred to as n-frame
- origin o_{n} is located at the center of mass of the body (e.g., air, land or sea vehicle) of interest
- z_{n}-axis points "down" normal to the earth's surface (approximately towards the center of the earth)
- $x_{n}-y_{n}$ axes then constrained to lie in plane locally-level (tangential) to the earth's surface
- x_{n}-axis points to the north pole
- y_{n}-axis is chosen to complete right hand coordinate system
- frame's configuration is often referred to as the NED frame
- $x_{n} \rightarrow$ North, $y_{n} \rightarrow$ East, and $z_{n} \rightarrow$ Down

- o_{n} on (potentially moving) body

- o_{n} on (potentially moving) body
- x_{n}-axis points north

- o_{n} on (potentially moving) body
- x_{n}-axis points north
- y_{n}-axis points east

- o_{n} on (potentially moving) body
- x_{n}-axis points north
- y_{n}-axis points east
- z_{n}-axis points "down"

Body Frame

- attached to moving body (e.g., land, air or sea vehicle) and moves (position and orientation/attitute) with body
- origin o_{b} located at the center of mass of the body (co-located with Nav frame's o_{n})
- x_{b}-axis points "forward" wrt moving body
- z_{b}-axis points loosely "down"
- varies with the roll/pitch of the vehicle
- y_{b}-axis chosen to complete right hand coordinate system
- referred to as b-frame

- body frame is fixed with respect to the vehicle

- body frame is fixed with respect to the vehicle
- x_{b} "forward"

- body frame is fixed with respect to the vehicle
- x_{b} "forward"
- z_{b} "down"

- body frame is fixed with respect to the vehicle
- x_{b} "forward"
- z_{b} "down"
- y_{b} completes right hand coordinate system ("right")

- Wander Azimuth Frame (alternative to the Nav frame)
- does not always point north (x - and y - axes displaced from north and east by an angle) to avoid numerical stability problems near the poles
- Other locally level frames
- Tangential Frame
- typically, refers to another type of the ECEF frame fixed to the Earth's surface (not moving like the n-frame)
- Computer Frame
- virtual coordinate frame that represents where we think we are

