EE 565: Position, Navigation and Timing

Navigation Mathematics: Rotation Matrices

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA

January 23, 2018

Lecture Topics

(1) Review
(2) Attitude (Orientation)
(3) Rotation Matrices
(4) Examples
(5) Summary

- Coordinate Frames - subscript will "name" axes (vectors)

- Coordinate Frames - subscript will "name" axes (vectors)
- Earth-Centered Inertial (ECI) Frame - i

- Coordinate Frames - subscript will "name" axes (vectors)
- Earth-Centered Inertial (ECI) Frame - i
- Earth-Centered Earth-Fixed (ECEF) Frame - e

- Coordinate Frames - subscript will "name" axes (vectors)
- Earth-Centered Inertial (ECI) Frame - i
- Earth-Centered Earth-Fixed (ECEF) Frame - e
- Navigation (Nav) Frame - n

- Coordinate Frames - subscript will "name" axes (vectors)
- Earth-Centered Inertial (ECI) Frame - i
- Earth-Centered Earth-Fixed (ECEF) Frame - e
- Navigation (Nav) Frame - n
- Body Frame - b

Attitude (Orientation)

- Attitude describes orientation of one coordinate frame with respect to another.
- Attitude describes orientation of one coordinate frame with respect to another.
- How would one describe orientation of ECEF frame wrt ECI frame at point in time when angular difference is θ ?

- Attitude describes orientation of one coordinate frame with respect to another.
- How would one describe orientation of ECEF frame wrt ECI frame at point in time when angular difference is θ ?

- e-frame rotated away from i-frame by angle θ about $z_{i} \equiv z_{e}$

Attitude (Orientation)

- Less obvious, but equally valid, way of describing e-frame wrt i-frame is by giving coordinates of the e-frame's axes in the i-frame.
- Less obvious, but equally valid, way of describing e-frame wrt i-frame is by giving coordinates of the e-frame's axes in the i-frame.
- Leads to need for further notation:
- Less obvious, but equally valid, way of describing e-frame wrt i-frame is by giving coordinates of the e-frame's axes in the i-frame.
- Leads to need for further notation:

$$
x_{e}^{i} \text { is } x_{e}=x_{e}^{e}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \text { coordinatized (written wrt) the } i \text {-frame }
$$

- Less obvious, but equally valid, way of describing e-frame wrt i-frame is by giving coordinates of the e-frame's axes in the i-frame.
- Leads to need for further notation:
- x_{e}^{i} is $x_{e}=x_{e}^{e}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ coordinatized (written wrt) the i-frame
- y_{e}^{i} is $y_{e}=y_{e}^{e}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ coordinatized (written wrt) the i-frame
- Less obvious, but equally valid, way of describing e-frame wrt i-frame is by giving coordinates of the e-frame's axes in the i-frame.
- Leads to need for further notation:
- x_{e}^{i} is $x_{e}=x_{e}^{e}=\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]$ coordinatized (written wrt) the i-frame
- y_{e}^{i} is $y_{e}=y_{e}^{e}=\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]$ coordinatized (written wrt) the i-frame
- z_{e}^{i} is $z_{e}=z_{e}^{e}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ coordinatized (written wrt) the i-frame

Attitude (Orientation)

- x_{e}^{i}.

- x_{e}^{i}

$-x_{e}^{i}=\left[\begin{array}{c}x_{e} \cdot x_{i} \\ x_{e} \cdot y_{i} \\ x_{e} \cdot z_{i}\end{array}\right]=\left[\begin{array}{c}\left\|x_{e}\right\|\left\|x_{i}\right\| \cos (\theta) \\ \left\|x_{e}\right\|\left\|y_{i}\right\| \cos \left(90^{\circ}-\theta\right) \\ \left\|x_{e}\right\|\left\|z_{i}\right\| \cos \left(90^{\circ}\right)\end{array}\right]=\left[\begin{array}{c}\cos (\theta) \\ \sin (\theta) \\ 0\end{array}\right]$

Attitude (Orientation)

- y_{e}^{i} :

- y_{e}^{i} :

- $y_{e}^{i}=\left[\begin{array}{c}y_{e} \cdot x_{i} \\ y_{e} \cdot y_{i} \\ y_{e} \cdot z_{i}\end{array}\right]=\left[\begin{array}{c}\left\|y_{e}\right\|\left\|x_{i}\right\| \cos \left(90^{\circ}+\theta\right) \\ \left\|y_{e}\right\|\left\|y_{i}\right\| \cos (\theta) \\ \left\|y_{e}\right\|\left\|z_{i}\right\| \cos \left(90^{\circ}\right)\end{array}\right]=\left[\begin{array}{c}-\sin (\theta) \\ \cos (\theta) \\ 0\end{array}\right]$

Attitude (Orientation)

- z_{e}^{i}

- z_{e}^{i}

- $z_{e}^{i}=\left[\begin{array}{c}z_{e} \cdot x_{i} \\ z_{e} \cdot y_{i} \\ z_{e} \cdot z_{i}\end{array}\right]=\left[\begin{array}{c}\left\|z_{e}\right\|\left\|x_{i}\right\| \cos \left(90^{\circ}\right) \\ \left\|z_{e}\right\|\left\|y_{i}\right\| \cos \left(90^{\circ}\right) \\ \left\|z_{e}\right\|\left\|z_{i}\right\| \cos (0)\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$
- 3×3 matrix can be constructed by using each basis vector of the e-frame wrt $i-$ frame as a column
- 3×3 matrix can be constructed by using each basis vector of the e-frame wrt $i-$ frame as a column
- $C_{e}^{i}=\left[x_{e}^{i}\left|y_{e}^{i}\right| z_{e}^{i}\right]=\left[\begin{array}{c|c|c}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
- 3×3 matrix can be constructed by using each basis vector of the e-frame wrt $i-$ frame as a column
- $C_{e}^{i}=\left[x_{e}^{i}\left|y_{e}^{i}\right| z_{e}^{i}\right]=\left[\begin{array}{c|c|c}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
- C_{e}^{i} describes the attitude/orientation of the e-frame wrt the i-frame
- 3×3 matrix can be constructed by using each basis vector of the e-frame wrt $i-$ frame as a column
- $C_{e}^{i}=\left[x_{e}^{i}\left|y_{e}^{i}\right| z_{e}^{i}\right]=\left[\begin{array}{c|c|c}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$
- C_{e}^{i} describes the attitude/orientation of the e-frame wrt the i-frame
- C_{e}^{i} referred to as a rotation matrix, coordinate transformation matrix, or direct cosine matrix (DCM)
- In general, a rotation matrix C_{2}^{1} describes the orientation of frame $\{2\}$ relative to frame $\{1\}$

- In general, a rotation matrix C_{2}^{1} describes the orientation of frame $\{2\}$ relative to frame $\{1\}$

$$
\begin{aligned}
C_{2}^{1}= & {\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}
x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\
x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\
x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}
\end{array}\right]=\left[\begin{array}{lll}
x_{1} \cdot x_{2}, & x_{1} \cdot y_{2}, & x_{1} \cdot z_{2} \\
y_{1} \cdot x_{2}, & y_{1} \cdot y_{2}, & y_{1} \cdot z_{2} \\
z_{1} \cdot x_{2}, & z_{1} \cdot y_{2}, & z_{1} \cdot z_{2}
\end{array}\right] } \\
& =\left[\begin{array}{l}
\left(x_{1}^{2}\right)^{T} \\
\left(y_{1}^{2}\right)^{T} \\
\left(z_{1}^{2}\right)^{T}
\end{array}\right]=\left[x_{1}^{2}, y_{1}^{2}, z_{1}^{2}\right]^{T}=\left[C_{1}^{2}\right]^{T}
\end{aligned}
$$

- $C_{2}^{1}=\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]=\left[\begin{array}{lll}x_{1} \cdot x_{2}, & x_{1} \cdot y_{2}, & x_{1} \cdot z_{2} \\ y_{1} \cdot x_{2}, & y_{1} \cdot y_{2}, & y_{1} \cdot z_{2} \\ z_{1} \cdot x_{2}, & z_{1} \cdot y_{2}, & z_{1} \cdot z_{2}\end{array}\right]$

$$
=\left[\begin{array}{c}
\left(x_{1}^{2}\right)^{T} \\
\left(y_{1}^{2}\right)^{T} \\
\left(z_{1}^{2}\right)^{T}
\end{array}\right]=\left[\begin{array}{lll}
x_{1}^{2}, & y_{1}^{2}, & z_{1}^{2}
\end{array}\right]^{T}=\left[C_{1}^{2}\right]^{T}
$$

- opposite perspective (frame 2 wrt frame 1 given frame 1 wrt frame 2) is as simple as a matrix transpose!
- $\left[C_{2}^{1}\right]^{T} C_{2}^{1}=C_{1}^{2} C_{2}^{1}=I \Rightarrow C_{1}^{2}=\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1}$
- $\left[C_{2}^{1}\right]^{T} C_{2}^{1}=C_{1}^{2} C_{2}^{1}=I \Rightarrow C_{1}^{2}=\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1}$
(2) $\left|\left(C_{2}^{1}\right)^{T} C_{2}^{1}\right|=\left|C_{2}^{1}\right|\left|C_{2}^{1}\right|=|I| \Rightarrow\left|C_{2}^{1}\right|= \pm 1$ (+ for right hand coordinate system)
- $\left[C_{2}^{1}\right]^{T} C_{2}^{1}=C_{1}^{2} C_{2}^{1}=I \Rightarrow C_{1}^{2}=\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1}$
(3) $\left|\left(C_{2}^{1}\right)^{T} C_{2}^{1}\right|=\left|C_{2}^{1}\right|\left|C_{2}^{1}\right|=|I| \Rightarrow\left|C_{2}^{1}\right|= \pm 1$ (+ for right hand coordinate system)
- columns and rows of C_{2}^{1} are orthogonal
- $\left[C_{2}^{1}\right]^{T} C_{2}^{1}=C_{1}^{2} C_{2}^{1}=I \Rightarrow C_{1}^{2}=\left[C_{2}^{1}\right]^{T}=\left[C_{2}^{1}\right]^{-1}$
(3) $\left|\left(C_{2}^{1}\right)^{T} C_{2}^{1}\right|=\left|C_{2}^{1}\right|\left|C_{2}^{1}\right|=|I| \Rightarrow\left|C_{2}^{1}\right|= \pm 1$ (+ for right hand coordinate system)
(0) columns and rows of C_{2}^{1} are orthogonal
(0) magnitude of columns and rows in C_{2}^{1} are 1
- So far, rotation matrix C developed to describe orientation
- So far, rotation matrix C developed to describe orientation
- C can also perform change of coordinates on vector
- Consider a point P with location described as a vector in coordinate frame $\{1\}$

$$
\vec{P}^{1}=\left[\begin{array}{l}
u \\
v \\
w
\end{array}\right]=u x_{1}+v y_{1}+w z_{1}
$$

- With \vec{P}^{1} given, the location of point P can be described in coordinate frame $\{2\}$ via

$$
\begin{aligned}
\vec{P}^{2} & =\underbrace{\left[\begin{array}{l}
\vec{P}^{1} \cdot x_{2} \\
\vec{P}^{1} \cdot y_{2} \\
\vec{P}^{1} \cdot z_{2}
\end{array}\right]=\left[\begin{array}{c}
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot x_{2} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot y_{2} \\
\left(u x_{1}+v y_{1}+w z_{1}\right) \cdot z_{2}
\end{array}\right]}_{?} \\
& =\underbrace{\left[\begin{array}{lll}
x_{1} \cdot x_{2} & y_{1} \cdot x_{2} & z_{1} \cdot x_{2} \\
x_{1} \cdot y_{2} & y_{1} \cdot y_{2} & z_{1} \cdot y_{2} \\
x_{1} \cdot z_{2} & y_{1} \cdot z_{2} & z_{1} \cdot z_{2}
\end{array}\right]}_{?} \underbrace{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]}_{?}
\end{aligned}
$$

$$
\begin{aligned}
& =\underbrace{\left[\begin{array}{ccc}
x_{1} \cdot x_{2} & y_{1} \cdot x_{2} & z_{1} \cdot x_{2} \\
x_{1} \cdot y_{2} & y_{1} \cdot y_{2} & z_{1} \cdot y_{2} \\
x_{1} \cdot z_{2} & y_{1} \cdot z_{2} & z_{1} \cdot z_{2}
\end{array}\right]}_{C_{1}^{2}} \underbrace{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]}_{\vec{P}^{1}} \\
& =C_{1}^{2} \vec{P}^{1}
\end{aligned}
$$

- $\Rightarrow \vec{P}^{2}=C_{1}^{2} \vec{P}^{1}$

$$
\begin{aligned}
& =\underbrace{\left[\begin{array}{ccc}
x_{1} \cdot x_{2} & y_{1} \cdot x_{2} & z_{1} \cdot x_{2} \\
x_{1} \cdot y_{2} & y_{1} \cdot y_{2} & z_{1} \cdot y_{2} \\
x_{1} \cdot z_{2} & y_{1} \cdot z_{2} & z_{1} \cdot z_{2}
\end{array}\right]}_{C_{1}^{2}} \underbrace{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]}_{\vec{P}^{1}} \\
& =C_{1}^{2} \vec{P}^{1}
\end{aligned}
$$

- $\Rightarrow \vec{P}^{2}=C_{1}^{2} \vec{P}^{1}$
- C_{1}^{2} re-coordinatized vector written wrt frame 1 into frame 2 by a matrix-multiplication

$$
\begin{aligned}
& =\underbrace{\left[\begin{array}{ccc}
x_{1} \cdot x_{2} & y_{1} \cdot x_{2} & z_{1} \cdot x_{2} \\
x_{1} \cdot y_{2} & y_{1} \cdot y_{2} & z_{1} \cdot y_{2} \\
x_{1} \cdot z_{2} & y_{1} \cdot z_{2} & z_{1} \cdot z_{2}
\end{array}\right]}_{C_{1}^{2}} \underbrace{\left[\begin{array}{c}
u \\
v \\
w
\end{array}\right]}_{\vec{P}^{1}} \\
& =C_{1}^{2} \vec{P}^{1}
\end{aligned}
$$

- $\Rightarrow \vec{P}^{2}=C_{1}^{2} \vec{P}^{1}$
- C_{1}^{2} re-coordinatized vector written wrt frame 1 into frame 2 by a matrix-multiplication
- superscripts and subscripts help track/denote re-coordinatization

Similarly, coordinate transformations can be performed opposite way as well

$$
\begin{aligned}
& \vec{P}^{2}=C_{1}^{2} \vec{P}^{1} \\
& \Rightarrow \vec{P}^{1}=\left[C_{1}^{2}\right]^{-1} \vec{P}^{2}
\end{aligned}
$$

Similarly, coordinate transformations can be performed opposite way as well

$$
\begin{aligned}
& \vec{P}^{2}=C_{1}^{2} \vec{P}^{1} \\
& \Rightarrow \vec{P}^{1}=\left[C_{1}^{2}\right]^{-1} \vec{P}^{2} \\
& =\left[C_{1}^{2}\right]^{T} \vec{P}^{2}
\end{aligned}
$$

Similarly, coordinate transformations can be performed opposite way as well

$$
\begin{aligned}
& \vec{P}^{2}=C_{1}^{2} \vec{P}^{1} \\
& \Rightarrow \vec{P}^{1}=\left[C_{1}^{2}\right]^{-1} \vec{P}^{2} \\
& =\left[C_{1}^{2}\right]^{T} \vec{P}^{2} \\
& =C_{2}^{1} \vec{P}^{2}
\end{aligned}
$$

Example 1

Given $C_{b}^{a}=\left[\begin{array}{ccc}0 & -\frac{1}{2} & -\frac{\sqrt{3}}{2} \\ 0 & -\frac{\sqrt{3}}{2} & \frac{1}{2} \\ -1 & 0 & 0\end{array}\right]$ and frame a, sketch frame b.

Example 2

Frame 1 has been rotated away from frame 0 by 30° about z_{0}. Find \vec{r}^{0} given $\vec{r}^{1}=[0,2,0]^{T}, \cos \left(30^{\circ}\right)=\frac{\sqrt{3}}{2}$ and $\sin \left(30^{\circ}\right)=\frac{1}{2}$.

Rotation matrix can be thought of in three distinct ways:
(1) It describes the orientation of one coordinate frame wrt another coordinate frame
(2) It represents a coordinate transformation that relates the coordinates of a point (e.g., P) or vector in two different frames of reference
(3) It is an operator that takes a vector \vec{p} and rotates it into a new vector $C \vec{p}$, both in the same coordinate frame

