EE 565: Position, Navigation and Timing

Navigation Mathematics: Rotation Matrices, Part II

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
January 25, 2018

(1) Review
(2) Parameterizations of Rotations
(3) Fixed versus Relative Rotations
(4) Composition of Relative-axis Rotations
(5) Composition of Fixed-axis Rotations
(6) Example
(7) Summary

Rotation matrix, C_{2}^{1}

- describes orientation of

Review

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1

Review

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size

Review

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3

Review

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$
- is of the form $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$
- is of the form $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]=R_{z, \theta}$ for the basic (elementary) rotation about the z-axis by angle θ

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$
- is of the form $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]=R_{z, \theta}$ for the basic (elementary) rotation about the z-axis by angle θ similarly,

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right], \quad R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$
- is of the form $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]=R_{z, \theta}$ for the basic (elementary) rotation about the z-axis by angle θ similarly,

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right], \quad R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

- recoordinatizes vector \vec{v}^{2} in frame 1 via $\vec{v}^{1}=$

Rotation matrix, C_{2}^{1}

- describes orientation of frame 2 with respect to frame 1
- is of size 3×3
- is constructed via $\left[x_{2}^{1}, y_{2}^{1}, z_{2}^{1}\right]=\left[\begin{array}{lll}x_{2} \cdot x_{1}, & y_{2} \cdot x_{1}, & z_{2} \cdot x_{1} \\ x_{2} \cdot y_{1}, & y_{2} \cdot y_{1}, & z_{2} \cdot y_{1} \\ x_{2} \cdot z_{1}, & y_{2} \cdot z_{1}, & z_{2} \cdot z_{1}\end{array}\right]$
- has inverse $\left[C_{2}^{1}\right]^{-1}=\left[C_{2}^{1}\right]^{T}=C_{1}^{2}$
- is of the form $\left[\begin{array}{ccc}\cos (\theta) & -\sin (\theta) & 0 \\ \sin (\theta) & \cos (\theta) & 0 \\ 0 & 0 & 1\end{array}\right]=R_{z, \theta}$ for the basic (elementary) rotation about the z-axis by angle θ similarly,

$$
R_{x, \theta}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos (\theta) & -\sin (\theta) \\
0 & \sin (\theta) & \cos (\theta)
\end{array}\right], \quad R_{y, \theta}=\left[\begin{array}{ccc}
\cos (\theta) & 0 & \sin (\theta) \\
0 & 1 & 0 \\
-\sin (\theta) & 0 & \cos (\theta)
\end{array}\right]
$$

- recoordinatizes vector \vec{v}^{2} in frame 1 via $\vec{v}^{1}=C_{2}^{1} \vec{v}^{2}$

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

- these 9 parameters are not independent

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

- these 9 parameters are not independent
- 3 constraints due to columns being orthogonal
- 3 constraints due to columns being unit vectors

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

- these 9 parameters are not independent
- 3 constraints due to columns being orthogonal
- 3 constraints due to columns being unit vectors
$\Rightarrow 3$ free variables exist \Rightarrow need only 3 parameters to describe orientation

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

- these 9 parameters are not independent
- 3 constraints due to columns being orthogonal
- 3 constraints due to columns being unit vectors
$\Rightarrow 3$ free variables exist \Rightarrow need only 3 parameters to describe orientation
(2) Examples of 3-parameter descriptions:
- fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
- relative-axis (Euler) rotations (e.g., ZYZ, ZYX, ...)
- angle and axis

Many approaches to parameterize orientation
(1) Rotation matrices use $3 \times 3=9$ parameters

- these 9 parameters are not independent
- 3 constraints due to columns being orthogonal
- 3 constraints due to columns being unit vectors
$\Rightarrow 3$ free variables exist \Rightarrow need only 3 parameters to describe orientation
(2) Examples of 3-parameter descriptions:
- fixed-axis rotations (e.g., Roll-Pitch-Yaw/ZYX)
- relative-axis (Euler) rotations (e.g., ZYZ, ZYX, ...)
- angle and axis
(3) Quaternions use 4 parameters

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.
(1) Fixed-axis rotation - rotation performed about $x-, y-$, or z-axis of initial (and fixed) coordinate frame

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.
(1) Fixed-axis rotation - rotation performed about $x-, y-$, or z-axis of initial (and fixed) coordinate frame
(2) Relative-axis rotation - rotation performed about $x-, y-$, or z-axis of current (and relative) coordinate frame

- sometimes referred to as Euler rotations

When one wants to rotate a coordinate frame about an axis, that axis can be in a fixed-frame or relative-frame.
(1) Fixed-axis rotation - rotation performed about $x-, y-$, or z-axis of initial (and fixed) coordinate frame
(2) Relative-axis rotation - rotation performed about $x-, y$-, or z-axis of current (and relative) coordinate frame

- sometimes referred to as Euler rotations

Resulting orientation is quite different!

Example sequence of three consecutive rotations to compare fixed versus relative.

- Step 1: Rotate about the z-axis by ψ
- Step 2: Rotate about the y-axis by θ
- Step 3: Rotate about the x-axis by ϕ

Relative-axis Rotation

Fixed-axis Rotation

Relative-axis Rotation

Rotate about z_{1}

Fixed-axis Rotation

Rotate about z_{1}

Relative-axis Rotation

Rotate about y_{2}

Fixed-axis Rotation

Rotate about y_{1}

Relative-axis Rotation

Rotate about x_{3}

Fixed-axis Rotation

Rotate about x_{1}

Construct rotation matrix that represents composition of relative-axis rotations using $Z-Y-X$ sequence of three rotations from previous example.

- Start with last rotation $C_{4}^{3}=\left[x_{4}^{3}, y_{4}^{3}, z_{4}^{3}\right]=R_{x, \phi}$, and recall columns are vectors.
- To re-coordinatize vectors $x_{4}^{3}, y_{4}^{3}, z_{4}^{3}$ in frame 2 , multiply each by $C_{3}^{2}=R_{y, \theta}$.

Construct rotation matrix that represents composition of relative-axis rotations using $Z-Y-X$ sequence of three rotations from previous example.

- Start with last rotation $C_{4}^{3}=\left[x_{4}^{3}, y_{4}^{3}, z_{4}^{3}\right]=R_{x, \phi}$, and recall columns are vectors.
- To re-coordinatize vectors $x_{4}^{3}, y_{4}^{3}, z_{4}^{3}$ in frame 2 , multiply each by $C_{3}^{2}=R_{y, \theta}$.
\Rightarrow (in matrix form) $\left[C_{3}^{2} x_{4}^{3}, C_{3}^{2} y_{4}^{3}, C_{3}^{2} z_{4}^{3}\right]=\left[x_{4}^{2}, y_{4}^{2}, z_{4}^{2}\right]=C_{4}^{2}$

Construct rotation matrix that represents composition of relative-axis rotations using $Z-Y-X$ sequence of three rotations from previous example.

- Start with last rotation $C_{4}^{3}=\left[x_{4}^{3}, y_{4}^{3}, z_{4}^{3}\right]=R_{x, \phi}$, and recall columns are vectors.
- To re-coordinatize vectors $x_{4}^{3}, y_{4}^{3}, z_{4}^{3}$ in frame 2 , multiply each by $C_{3}^{2}=R_{y, \theta}$.
\Rightarrow (in matrix form) $\left[C_{3}^{2} x_{4}^{3}, C_{3}^{2} y_{4}^{3}, C_{3}^{2} z_{4}^{3}\right]=\left[x_{4}^{2}, y_{4}^{2}, z_{4}^{2}\right]=C_{4}^{2}$
where it is noted that $\left[C_{3}^{2} x_{4}^{3}, C_{3}^{2} y_{4}^{3}, C_{3}^{2} z_{4}^{3}\right]=C_{3}^{2}\left[x_{4}^{3}, y_{4}^{3}, z_{4}^{3}\right]=C_{3}^{2} C_{4}^{3}=C_{4}^{2}$
- To re-coordinatize vectors $x_{4}^{2}, y_{4}^{2}, z_{4}^{2}$ in frame 1 , multiply each by $C_{2}^{1}=R_{z, \psi}$.

$$
\Rightarrow\left[C_{2}^{1} x_{4}^{2}, C_{2}^{1} y_{4}^{2}, C_{2}^{1} z_{4}^{2}\right]=C_{2}^{1}\left[x_{4}^{2}, y_{4}^{2}, z_{4}^{2}\right]=C_{2}^{1} C_{4}^{2}=C_{2}^{1} C_{3}^{2} C_{4}^{3}=C_{4}^{1}
$$

- To re-coordinatize vectors $x_{4}^{2}, y_{4}^{2}, z_{4}^{2}$ in frame 1 , multiply each by $C_{2}^{1}=R_{z, \psi}$.

$$
\Rightarrow\left[C_{2}^{1} x_{4}^{2}, C_{2}^{1} y_{4}^{2}, C_{2}^{1} z_{4}^{2}\right]=C_{2}^{1}\left[x_{4}^{2}, y_{4}^{2}, z_{4}^{2}\right]=C_{2}^{1} C_{4}^{2}=C_{2}^{1} C_{3}^{2} C_{4}^{3}=C_{4}^{1}
$$

- Combined sequence of relative-rotations yields

$$
C_{4}^{1}=C_{2}^{1} C_{3}^{2} C_{4}^{3}=\underbrace{R_{z, \psi}}_{1 s t} \underbrace{R_{y, \theta}}_{2 n d} \underbrace{R_{x, \phi}}_{3 r d}
$$

- To re-coordinatize vectors $x_{4}^{2}, y_{4}^{2}, z_{4}^{2}$ in frame 1 , multiply each by $C_{2}^{1}=R_{z, \psi}$.

$$
\Rightarrow\left[C_{2}^{1} x_{4}^{2}, C_{2}^{1} y_{4}^{2}, C_{2}^{1} z_{4}^{2}\right]=C_{2}^{1}\left[x_{4}^{2}, y_{4}^{2}, z_{4}^{2}\right]=C_{2}^{1} C_{4}^{2}=C_{2}^{1} C_{3}^{2} C_{4}^{3}=C_{4}^{1}
$$

- Combined sequence of relative-rotations yields

$$
C_{4}^{1}=C_{2}^{1} C_{3}^{2} C_{4}^{3}=\underbrace{R_{z, \psi}}_{1 s t} \underbrace{R_{y, \theta}}_{2 n d} \underbrace{R_{x, \phi}}_{3 r d}
$$

- Note order is left to right!
- Additional relative-rotations represented by right (post) matrix multiplies.

For the relative-axis rotations $Z(\psi), Y(\theta), X(\phi)$

$$
\begin{aligned}
C_{4}^{1} & =C_{2}^{1} C_{3}^{2} C_{4}^{3} \\
& =R_{z, \psi} R_{y, \theta} R_{x, \phi} \\
& =\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right]
\end{aligned}
$$

where the notation $c_{\beta}=\cos (\beta)$ and $s_{\beta}=\sin (\beta)$ are introduced.

- Development of equivalent rotation matrix for sequence of fixed-axis rotations will make use of rotation matrix's ability to rotate a vector.
- A vector \vec{p} can be rotated into a new vector via $R \vec{p}$, both in the same coordinate frame.
- The sequence $Z(\psi)-Y(\theta)-X(\phi)$ aka Yaw-Pitch-Roll will be considered again, but this time about fixed-axes.
- First z-axis rotation rotates frame $\{1\}$'s basis vectors to become frame $\{2\}$'s basis vectors $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{z, \psi}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=R_{z, \psi}$.
- First z-axis rotation rotates frame $\{1$ \}'s basis vectors to become frame $\{2\}$'s basis vectors $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{z, \psi}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=R_{z, \psi}$.
- Second y-axis rotation rotates frame $\{2\}$'s basis vectors to become frame $\{3\}$'s basis vectors $\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{y, \theta}\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{y, \theta} R_{z, \psi}$.
- First z-axis rotation rotates frame $\{1\}$'s basis vectors to become frame $\{2\}$'s basis vectors $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{z, \psi}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=R_{z, \psi}$.
- Second y-axis rotation rotates frame $\{2\}$'s basis vectors to become frame $\{3\}$'s basis vectors $\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{y, \theta}\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{y, \theta} R_{z, \psi}$.
- Third x-axis rotation rotates frame $\{3\}$'s basis vectors to become frame $\{4\}$'s basis vector $\left[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}\right]=R_{x, \phi}\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{x, \phi} R_{y, \theta} R_{z, \psi}$.
- First z-axis rotation rotates frame $\{1\}$'s basis vectors to become frame $\{2\}$'s basis vectors $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{z, \psi}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=R_{z, \psi}$.
- Second y-axis rotation rotates frame $\{2\}$'s basis vectors to become frame $\{3\}$'s basis vectors $\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{y, \theta}\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{y, \theta} R_{z, \psi}$.
- Third x-axis rotation rotates frame $\{3\}$'s basis vectors to become frame $\{4\}$'s basis vector $\left[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}\right]=R_{x, \phi}\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{x, \phi} R_{y, \theta} R_{z, \psi}$.
$\Rightarrow C_{4}^{1}=\underbrace{R_{x, \phi}}_{3 r d} \underbrace{R_{y, \theta}}_{2 n d} \underbrace{R_{z, \psi}}_{1 s t}$
- First z-axis rotation rotates frame $\{1\}$'s basis vectors to become frame $\{2\}$'s basis vectors $\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{z, \psi}\left[\vec{x}_{1}^{1}, \vec{y}_{1}^{1}, \vec{z}_{1}^{1}\right]=R_{z, \psi}$.
- Second y-axis rotation rotates frame $\{2\}$'s basis vectors to become frame $\{3\}$'s basis vectors $\left[\vec{x}_{3}^{1}, \vec{y}_{3}^{1}, \vec{z}_{3}^{1}\right]=R_{y, \theta}\left[\vec{x}_{2}^{1}, \vec{y}_{2}^{1}, \vec{z}_{2}^{1}\right]=R_{y, \theta} R_{z, \psi}$.
- Third x-axis rotation rotates frame $\{3\}$'s basis vectors to become frame $\{4\}$'s basis vector $\left[\vec{x}_{4}^{1}, \vec{y}_{4}^{1}, \vec{z}_{4}^{1}\right]=R_{x, \phi}\left[\vec{x}_{3}^{1}, \vec{y}{ }_{3}^{1}, \vec{z}{ }_{3}^{1}\right]=R_{x, \phi} R_{y, \theta} R_{z, \psi}$.
$\Rightarrow C_{4}^{1}=\underbrace{R_{x, \phi}}_{3 r d} \underbrace{R_{y, \theta}}_{2 n d} \underbrace{R_{z, \psi}}_{1 s t}$
- Note order is right to left!
- Additional fixed-rotations represented by left (pre) matrix multiplies.

For the fixed-axis rotations $Z(\psi), Y(\theta), X(\phi)$

$$
\begin{aligned}
C_{4}^{1} & =R_{x, \phi} R_{y, \theta} R_{z, \psi} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & -c_{\theta} s_{\psi} & s_{\theta} \\
c_{\psi} s_{\theta} s_{\phi}+c_{\phi} s_{\psi} & c_{\phi} c_{\psi}-s_{\theta} s_{\phi} s_{\psi} & -c_{\theta} s_{\phi} \\
s_{\phi} s_{\psi}-c_{\phi} c_{\psi} s_{\theta} & c_{\psi} s_{\phi}+c_{\phi} s_{\theta} s_{\psi} & c_{\theta} c_{\phi}
\end{array}\right]
\end{aligned}
$$

For the fixed-axis rotations $Z(\psi), Y(\theta), X(\phi)$

$$
\begin{aligned}
C_{4}^{1} & =R_{x, \phi} R_{y, \theta} R_{z, \psi} \\
& =\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & \sin \theta \\
0 & 1 & 0 \\
-\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \psi & -\sin \psi & 0 \\
\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & -c_{\theta} s_{\psi} & s_{\theta} \\
c_{\psi} s_{\theta} s_{\phi}+c_{\phi} s_{\psi} & c_{\phi} c_{\psi}-s_{\theta} s_{\phi} s_{\psi} & -c_{\theta} s_{\phi} \\
s_{\phi} s_{\psi}-c_{\phi} c_{\psi} s_{\theta} & c_{\psi} s_{\phi}+c_{\phi} s_{\theta} s_{\psi} & c_{\theta} c_{\phi}
\end{array}\right]
\end{aligned}
$$

which is quite different than the result for the same sequence of relative-axis rotations.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.
(2) Rotate about fixed z-axis by θ.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.
(2) Rotate about fixed z-axis by θ.
(3) Rotate about current x-axis by ψ.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.
(2) Rotate about fixed z-axis by θ.
(3) Rotate about current x-axis by ψ.
(1) Rotate about current z-axis by α.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.
(2) Rotate about fixed z-axis by θ.
(3) Rotate about current x-axis by ψ.
(1) Rotate about current z-axis by α.
(5) Rotate about fixed y-axis by β.

Example

Find the rotation matrix that represents the orientation of the coordinate frame that results from the following sequence of rotations. Assume the frames start in the same orientation.
(1) Rotate about fixed x-axis by ϕ.
(2) Rotate about fixed z-axis by θ.
(3) Rotate about current x-axis by ψ.
(1) Rotate about current z-axis by α.
(5) Rotate about fixed y-axis by β.
(0) Rotate about current y-axis by γ.

Fixed vs Relative Rotations

- Fixed-axis Rotations
- Multiply on the LEFT
- $C_{\text {final }}=R_{n} \ldots R_{2} R_{1}$

Fixed-axis Rotation

$C_{\text {resultant }}=R_{\text {fixed }} C_{\text {original }}$

Fixed vs Relative Rotations

- Fixed-axis Rotations
- Multiply on the LEFT
- $C_{\text {final }}=R_{n} \ldots R_{2} R_{1}$

Fixed-axis Rotation

$C_{\text {resultant }}=R_{\text {fixed }} C_{\text {original }}$

- Relative-axis (Euler) Rotations
- Multiply on the RIGHT
- $C_{\text {final }}=R_{1} R_{2} \ldots R_{n}$

Relative-axis Rotation

$C_{\text {resultant }}=C_{\text {original }} R_{\text {relative }}$

Fixed vs Relative Rotations

- Fixed-axis Rotations
- Multiply on the LEFT
- $C_{\text {final }}=R_{n} \ldots R_{2} R_{1}$

Fixed-axis Rotation

$C_{\text {resultant }}=R_{\text {fixed }} C_{\text {original }}$

- Relative-axis (Euler) Rotations
- Multiply on the RIGHT
- $C_{\text {final }}=R_{1} R_{2} \ldots R_{n}$

Relative-axis Rotation

$C_{\text {resultant }}=C_{\text {original }} R_{\text {relative }}$

Two types of rotations can be composed noting order of multiplication

Review	Orientation	Fixed vs Relative	Relative-axis Rotations	Fixed-axis Rotations	Example
Kevin Wedeward, Aly El-Osery	(NMT)	EE 565: Position, Navigation and Timing	January 25, 2018	$15 / 16$	

