EE 565: Position, Navigation and Timing

Navigation Mathematics: Other Descriptions of Orientation

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
January 30, 2018

Lecture Topics

(1) Review

(2) Roll-Pitch-Yaw Angles
(3) Angle-Axis

4 Quaternions

Rotation Matrices R, C

- Notation to be adopted:
- C represents an orientation
- R represents a rotation

Rotation Matrices R, C

- Notation to be adopted:
- C represents an orientation
- R represents a rotation
- Sequence of rotations can be composed via multiplication of rotation matrices
- rotations about relative axis \Rightarrow post-/right-multiply

$$
C_{\text {final }}=C_{\text {initial }} R
$$

- rotations about fixed axis \Rightarrow pre-/left-multiply

$$
C_{\text {final }}=R C_{\text {initial }}
$$

Rotation Matrices R, C

- Notation to be adopted:
- C represents an orientation
- R represents a rotation
- Sequence of rotations can be composed via multiplication of rotation matrices
- rotations about relative axis \Rightarrow post-/right-multiply

$$
C_{\text {final }}=C_{\text {initial }} R
$$

- rotations about fixed axis \Rightarrow pre-/left-multiply

$$
C_{\text {final }}=R C_{\text {initial }}
$$

- $3 \times 3=9$ elements with 6 constraints $\Rightarrow 3$ parameters are sufficient to describe orientation

What is orientation of ECEF frame resolved in ECI frame, i.e. C_{e}^{i} ?

$$
C_{e}^{i}=R_{z, \theta_{i e}}=\left[\begin{array}{ccc}
\cos \theta_{i e} & -\sin \theta_{i e} & 0 \\
\sin \theta_{i e} & \cos \theta_{i e} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is $\theta_{i e}$?

What is orientation of ECEF frame resolved in ECI frame, i.e. C_{e}^{i} ?

$$
C_{e}^{i}=R_{z, \theta_{i e}}=\left[\begin{array}{ccc}
\cos \theta_{i e} & -\sin \theta_{i e} & 0 \\
\sin \theta_{i e} & \cos \theta_{i e} & 0 \\
0 & 0 & 1
\end{array}\right]
$$

What is $\theta_{i e}$? angle from frame $\{i\}$ to frame $\{e\}$;

What is orientation of ECEF frame resolved in ECI frame, i.e. C_{e}^{i} ?
$C_{e}^{i}=R_{z, \theta_{i e}}=\left[\begin{array}{ccc}\cos \theta_{i e} & -\sin \theta_{i e} & 0 \\ \sin \theta_{i e} & \cos \theta_{i e} & 0 \\ 0 & 0 & 1\end{array}\right]$

What is $\theta_{i e}$? angle from frame $\{i\}$ to frame $\{e\}$; here $\theta_{i e}=\omega_{i e}\left(t-t_{0}\right)$

Review - Example

What is the nav frame resolved in the ECEF frame, i.e. C_{n}^{e} ?

Roll-Pitch-Yaw angles

- often used to represent orientation of aircraft
- three angles (ϕ, θ, ψ) that represent the sequence of rotations about the $x-, y$ and z-axes of a fixed frame
- given angles (ϕ, θ, ψ), equivalent rotation matrix can be found via

$$
\begin{aligned}
C_{R P Y} & =R_{z, \psi} R_{y, \theta} R_{x, \phi} \\
& =\left[\begin{array}{ccc}
c_{\psi} & -s_{\psi} & 0 \\
s_{\psi} & c_{\psi} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
c_{\theta} & 0 & s_{\theta} \\
0 & 1 & 0 \\
-s_{\theta} & 0 & c_{\theta}
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & c_{\phi} & -s_{\phi} \\
0 & s_{\phi} & c_{\phi}
\end{array}\right] \\
& =\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right]
\end{aligned}
$$

Given a rotation matrix that describes a desired orientation

$$
C_{\text {desired }}=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]
$$

Roll-Pitch-Yaw angles (ϕ, θ, ψ) can be found (the inverse solution) by equating combinations of terms

$$
\begin{gathered}
{\left[\begin{array}{ccc}
\hline c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
\hline \hline c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
C_{11} & C_{12} & C_{13} \\
\frac{C_{21}}{} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]} \\
C_{11}=\frac{c_{\theta} s_{\psi}}{c_{\theta} c_{\psi}}=\tan (\psi)
\end{gathered}
$$

$$
\begin{array}{ccc}
{\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]} \\
\frac{C_{32}}{C_{33}}=\frac{c_{\theta} s_{\phi}}{c_{\theta} c_{\phi}}=\tan (\phi)
\end{array}
$$

$$
\begin{gathered}
{\left[\begin{array}{ccc}
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
c_{\theta} s_{\psi} & c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
-s_{\theta} & \boxed{C_{\theta} s_{\phi}} & c_{\theta} c_{\phi}
\end{array}\right]=\left[\begin{array}{ccc}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right]} \\
\left.\begin{array}{ccc}
C_{33} & \frac{c_{\theta} s_{\phi}}{c_{\theta} c_{\phi}}=\tan (\phi) \\
c_{\theta} c_{\psi} & c_{\psi} s_{\theta} s_{\phi}-c_{\phi} s_{\psi} & c_{\phi} c_{\psi} s_{\theta}+s_{\phi} s_{\psi} \\
-\frac{c_{\phi} c_{\psi}+s_{\theta} s_{\phi} s_{\psi}}{} & c_{\phi} s_{\theta} s_{\psi}-c_{\psi} s_{\phi} \\
c_{\theta} s_{\phi} & c_{\theta} c_{\phi}
\end{array}\right]=\left[\begin{array}{lll}
C_{11} & C_{12} & C_{13} \\
C_{21} & C_{22} & C_{23} \\
C_{31} & C_{32} & C_{33}
\end{array}\right] \\
\\
\frac{-C_{31}}{\sqrt{C_{32}^{2}+C_{33}^{2}}}=\frac{-\left(-s_{\theta}\right)}{\sqrt{c_{\theta}^{2}\left(s_{\phi}^{2}+c_{\phi}^{2}\right)}}=\frac{s_{\theta}}{c_{\theta}}=\tan (\theta)
\end{gathered}
$$

Angle-Axis

- one rotation about general axis will be used to describe orientation, so does not have the "rotation in sequence" issue
- rotation matrix C can be realized via rotation away from initial frame by angle θ about appropriately chosen axis $\vec{k}=\left[k_{1}, k_{2}, k_{3}\right]^{T}$ of rotation
- assume \vec{k} is a unit vector
- Rotation matrix can be derived by rotating one of the principal axis $(x, y$, or $z)$ onto the vector \vec{k}, performing a rotation of θ, and finally undoing the original changes.
- Common sequence is

$$
R_{\vec{k}, \theta}=\underbrace{R_{z, \alpha} R_{y, \beta}}_{\text {align } \mathrm{z} \text { with } \vec{k}} R_{z, \theta}
$$

Noting

$$
\begin{aligned}
& \sin \alpha=\frac{k_{2}}{\sqrt{k_{1}^{2}+k_{2}^{2}}}, \quad \cos \alpha=\frac{k_{1}}{\sqrt{k_{1}^{2}+k_{2}^{2}}} \\
& \sin \beta=\sqrt{k_{1}^{2}+k_{2}^{2}}, \quad \cos \beta=k_{3}
\end{aligned}
$$

the composition of rotations becomes

$$
R_{\vec{k}, \theta}=\left[\begin{array}{ccc}
k_{1}^{2} V_{\theta} \tag{1}\\
k_{1} k_{2} V_{\theta}+c_{\theta} s_{\theta} & k_{1} k_{2} V_{\theta}-k_{3} s_{\theta} & k_{1} k_{2} k_{3} V_{\theta}+k_{2} s_{\theta} \\
k_{1} k_{3} V_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} V_{\theta}+k_{3} v_{3} s_{\theta} & k_{3}^{2} V_{\theta}+k_{\theta} c_{\theta}
\end{array}\right]
$$

where $\operatorname{versin}(\theta)=V_{\theta} \equiv 1-c_{\theta}$.

Alternate approach to development of angle-axis is to relate rotation matrix to its equivalent angle-axis pair by

$$
R_{\vec{k}, \theta(t)}=e^{\kappa \theta(t)}
$$

where

skew-symmetric

$$
\kappa=[\vec{k} \times]=\left[\begin{array}{ccc}
0 & -k_{3} & k_{2} \\
k_{3} & 0 & -k_{1} \\
-k_{2} & k_{1} & 0
\end{array}\right]
$$

is the skew-symmetric matrix version of the axis vector $\vec{k}=\left[\begin{array}{lll}k_{1} & k_{2} & k_{3}\end{array}\right]^{T}$ and $\kappa^{T}=-\kappa$.

- Using Taylor expansion of matrix-exponential

$$
R_{\vec{k}, \theta(t)}=e^{\kappa \theta(t)}=\mathcal{I}+\kappa \theta(t)+\frac{\kappa^{2} \theta^{2}(t)}{2!}+\frac{\kappa^{3} \theta^{3}(t)}{3!}+\cdots
$$

which, after a bit of manipulation (recalling Taylor series of sine and cosine and noting $\kappa^{3}=-\kappa$), can be shown to be

Rodrigues Formula

$$
R_{\vec{k}, \theta(t)}=\mathcal{I}+\sin (\theta(t)) \kappa+[1-\cos (\theta(t))] \kappa^{2}
$$

- Multiplying out the right hand side of the above equation gives us the same rotation matrix as that in Eq. 1 shown previously.

Desired rotation matrix to (\vec{k}, θ) - the inverse problem

$$
R_{\vec{k}, \theta}=\left[\begin{array}{ccc}
k_{1}^{2} V_{\theta}+c_{\theta} & k_{1} k_{2} V_{\theta}-k_{3} s_{\theta} & k_{1} k_{3} V_{\theta}+k_{2} s_{\theta} \\
k_{1} k_{2} V_{\theta}+k_{3} s_{\theta} & k_{2}^{2} V_{\theta}+c_{\theta} & k_{2} k_{3} V_{\theta}-k_{1} s_{\theta} \\
k_{1} k_{3} V_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} V_{\theta}+k_{1} s_{\theta} & k_{3}^{2} V_{\theta}+c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=R_{\text {desired }}
$$

- find angle-axis pair (\vec{k}, θ) needed to realize desired rotation matrix

Desired rotation matrix to (\vec{k}, θ) - the inverse problem

$$
R_{\vec{k}, \theta}=\left[\begin{array}{ccc}
k_{1}^{2} V_{\theta}+c_{\theta} & k_{1} k_{2} V_{\theta}-k_{3} s_{\theta} & k_{1} k_{3} V_{\theta}+k_{2} s_{\theta} \\
k_{1} k_{2} V_{\theta}+k_{3} s_{\theta} & k_{2}^{2} V_{\theta}+c_{\theta} & k_{2} k_{3} V_{\theta}-k_{1} s_{\theta} \\
k_{1} k_{3} V_{\theta}-k_{2} s_{\theta} & k_{2} k_{3} V_{\theta}+k_{1} s_{\theta} & k_{3}^{2} V_{\theta}+c_{\theta}
\end{array}\right]=\left[\begin{array}{ccc}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=R_{\text {desired }}
$$

- find angle-axis pair (\vec{k}, θ) needed to realize desired rotation matrix
- look at trace of rotation matrix and recall $V_{\theta} \equiv 1-\cos \theta$

$$
\begin{aligned}
& \operatorname{Tr}\left(R_{\vec{k}, \theta}\right)=\left[k_{1}^{2}+k_{2}^{2}+k_{3}^{2}\right](1-\cos \theta)+3 \cos \theta=1+2 \cos \theta \\
& \Rightarrow \theta=\cos ^{-1}\left(\frac{\operatorname{Tr}\left(R_{\vec{k}, \theta}\right)-1}{2}\right)=\cos ^{-1}\left(\frac{r_{11}+r_{22}+r_{33}-1}{2}\right)
\end{aligned}
$$

Now for the axis of rotation; a review of the structure suggests

$$
\begin{aligned}
& r_{32}-r_{23}=2 k_{1} s_{\theta} \\
& r_{13}-r_{31}=2 k_{2} s_{\theta} \\
& r_{21}-r_{12}=2 k_{3} s_{\theta}
\end{aligned}
$$

Now for the axis of rotation; a review of the structure suggests

$$
\begin{gathered}
r_{32}-r_{23}=2 k_{1} s_{\theta} \\
r_{13}-r_{31}=2 k_{2} s_{\theta} \\
r_{21}-r_{12}=2 k_{3} s_{\theta} \\
\Rightarrow \vec{k}=\left[\begin{array}{l}
k_{1} \\
k_{2} \\
k_{3}
\end{array}\right]=\frac{1}{2 s_{\theta}}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]
\end{gathered}
$$

A satellite orbiting the earth can be made to point it's telescope at a desired star by performing the following motions
(1) Rotate about it's x-axis by -30°, then
(2) Rotate about it's new z-axis by 50°, then finally
(3) Rotate about it's initial y-axis by 40°.

A satellite orbiting the earth can be made to point it's telescope at a desired star by performing the following motions
(1) Rotate about it's x-axis by -30°, then
(2) Rotate about it's new z-axis by 50°, then finally
(3) Rotate about it's initial y-axis by 40°.

What is its final orientation wrt the starting orientation?

A satellite orbiting the earth can be made to point it's telescope at a desired star by performing the following motions
(1) Rotate about it's x-axis by -30°, then
(2) Rotate about it's new z-axis by 50°, then finally
(3) Rotate about it's initial y-axis by 40°.

What is its final orientation wrt the starting orientation?

$$
\begin{aligned}
& \left.C_{\text {final }}^{\text {start }}=R_{(\vec{y}, \mathbf{4 0}}{ }^{\circ} R_{(\vec{x},-\mathbf{3 0}}{ }^{\circ} R_{(\vec{z}, \mathbf{5 0}}{ }^{\circ}\right) \\
& =\left[\begin{array}{ccc}
0.766044 & 0 & 0.642788 \\
0 & 1 & 0 \\
-0.642788 & 0 & 0.766044
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0.866025 & 0.5 \\
0 & -0.5 & 0.866025
\end{array}\right]\left[\begin{array}{ccc}
0.642788 & -0.766044 & 0 \\
0.766044 & 0.642788 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{ccc}
0.246202 & -0.793412 & 0.55667 \\
0.663414 & 0.663414 & 0.5 \\
-0.706588 & 0.246202 & 0.246202
\end{array}\right]
\end{aligned}
$$

- In order to save energy it is desirable to perform this change in orientation with only one rotation - How?
- In order to save energy it is desirable to perform this change in orientation with only one rotation - How?
- Perform a single, equivalent angle-axis rotation with

$$
\begin{aligned}
\theta & =\cos ^{-1}\left(\frac{\operatorname{Tr}\left(C_{\text {final }}^{\text {start }}\right)}{2}\right)=1 \\
\vec{k} & =\frac{1}{2 s_{\theta}}\left[\begin{array}{l}
r_{32}-r_{23} \\
r_{13}-r_{31} \\
r_{21}-r_{12}
\end{array}\right]=\left[\begin{array}{c}
-0.130495 \\
0.649529 \\
0.749055
\end{array}\right]
\end{aligned}
$$

Angle-Axis representation can be made three parameters via

$$
\vec{K}=\theta \vec{k}
$$

such that

$$
\theta=\|\vec{K}\|
$$

and

$$
\vec{k}=\frac{\vec{K}}{\|\vec{K}\|}
$$

Euler angles, RPY angles and angle-axis consist three elements, but they are not unique, e.g., there are orientations that are represented by different Euler angles, RYP angles and angle-axis.

Quaternion

- Quaternions are 4-element representation of the rotation vectors where the additional element makes quaternions unique.
- With 4 elements quaternions have the lowest dimensionality possible for a globally nonsingular attitude representation.

Given an angle-axis pair (θ, \vec{k}) or the corresponding rotation vector $\vec{K}=\theta \vec{k}$, a quaternion is defined as

$$
\bar{q}=\left[\begin{array}{c}
q_{s} \\
\vec{q}
\end{array}\right]=\left[\begin{array}{l}
q_{s} \\
q_{x} \\
q_{y} \\
q_{z}
\end{array}\right]=\left[\begin{array}{c}
\cos \left(\frac{\theta}{2}\right) \\
\vec{k} \sin \left(\frac{\theta}{2}\right)
\end{array}\right]
$$

where

- $q_{s}=\cos \left(\frac{\theta}{2}\right)$ is the scalar component
- $\vec{q}=\left[q_{x}, q_{y}, q_{z}\right]^{T}=\vec{k} \sin \left(\frac{\theta}{2}\right)$ is the vector component
- $|\bar{q}|=\sqrt{q_{s}^{2}+q_{x}^{2}+q_{y}^{2}+q_{z}^{2}}=\sqrt{\left(\cos \left(\frac{\theta}{2}\right)\right)^{2}+\left(k_{1} \sin \left(\frac{\theta}{2}\right)\right)^{2}+\left(k_{2} \sin \left(\frac{\theta}{2}\right)\right)^{2}+\left(k_{3} \sin \left(\frac{\theta}{2}\right)\right)^{2}}=$ $1 \Rightarrow$ a unit quaternion

Quaternion to Rotation Matrix

Trig identities can be applied term-by-term to $R_{\vec{k}, \theta}$ to find $R_{\bar{q}}$.

$$
\begin{aligned}
r_{11} & =k_{1}^{2} V_{\theta}+c_{\theta} \\
& =k_{1}^{2}(1-\cos (\theta))+\cos (\theta) \\
& =2 k_{1}^{2}(\underbrace{\left.\frac{1-\cos (\theta)}{2}\right)}_{\sin ^{2}\left(\frac{\theta}{2}\right)}+\underbrace{\cos (\theta)}_{\cos ^{2}\left(\frac{\theta}{2}\right)-\sin ^{2}\left(\frac{\theta}{2}\right)} \\
& =\cos ^{2}\left(\frac{\theta}{2}\right)+(2 k_{1}^{2}-\underbrace{1}_{k_{1}^{2}+k_{2}^{2}+k_{3}^{2}}) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& =\cos ^{2}\left(\frac{\theta}{2}\right)+\left(2 k_{1}^{2}-k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& =\cos ^{2}\left(\frac{\theta}{2}\right)+\left(k_{1}^{2}-k_{2}^{2}-k_{3}^{2}\right) \sin ^{2}\left(\frac{\theta}{2}\right) \\
& =\underbrace{\cos ^{2}\left(\frac{\theta}{2}\right)}_{q_{s}^{2}}+\underbrace{k_{1}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}_{q_{x}^{2}}-\underbrace{k_{2}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}_{a_{y}^{2}}-\underbrace{k_{3}^{2} \sin ^{2}\left(\frac{\theta}{2}\right)}_{q_{2}^{2}} \\
& =a_{s}^{2}+q_{x}^{2}-a_{y}^{2}-q_{z}^{2}
\end{aligned}
$$

Quaternion to Rotation Matrix

$$
R_{\bar{q}}=\left[q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2}\right.
$$

I

$$
\begin{aligned}
r_{12} & =k_{1} k_{2} V_{\theta}-k_{3} s_{\theta} \\
& =k_{1} k_{2}(1-\cos (\theta))-k_{3} \sin (\theta) \\
& =2 k_{1} k_{2} \underbrace{\left(\frac{1-\cos (\theta)}{2}\right)}_{\sin ^{2}\left(\frac{\theta}{2}\right)}-k_{3} \underbrace{\sin (\theta)}_{2 \sin \left(\frac{\theta}{2}\right) \cos \left(\frac{\theta}{2}\right)} \\
& =2 \underbrace{k_{1} \sin \left(\frac{\theta}{2}\right)}_{q_{x}} \underbrace{k_{2} \sin \left(\frac{\theta}{2}\right)}_{q_{y}}-2 \underbrace{\cos \left(\frac{\theta}{2}\right.}_{q_{s}}) \underbrace{k_{3} \sin \left(\frac{\theta}{2}\right)}_{q_{z}} \\
& =2\left(q_{x} q_{y}-q_{s} q_{z}\right)
\end{aligned}
$$

Quaternion to Rotation Matrix

$$
R_{\bar{q}}=\left[\begin{array}{ll}
q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2} & 2\left(q_{x} q_{y}-q_{s} q_{z}\right)
\end{array}\right]
$$ and so on ...

Rotation matrix from given quaternion

$$
R_{\bar{q}}=\left[\begin{array}{ccc}
q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2} & 2\left(q_{x} q_{y}-q_{s} q_{z}\right) & 2\left(q_{x} q_{z}+q_{s} q_{y}\right) \\
2\left(q_{x} q_{y}+q_{s} q_{z}\right) & q_{s}^{2}-q_{x}^{2}+q_{y}^{2}-q_{z}^{2} & 2\left(q_{y} q_{z}-q_{s} q_{x}\right) \\
2\left(q_{x} q_{z}-q_{s} q_{y}\right) & 2\left(q_{y} q_{z}+q_{s} q_{x}\right) & q_{s}^{2}-q_{x}^{2}-q_{y}^{2}+q_{z}^{2}
\end{array}\right]
$$

Quaternion from given rotation matrix

$$
\begin{aligned}
R_{\bar{q}} & =\left[\begin{array}{ccc}
q_{s}^{2}+q_{x}^{2}-q_{y}^{2}-q_{z}^{2} & 2\left(q_{x} q_{y}-q_{s} q_{z}\right) & 2\left(q_{x} q_{z}+q_{s} q_{y}\right) \\
2\left(q_{x} q_{y}+q_{s} q_{z}\right) & q_{s}^{2}-q_{x}^{2}+q_{y}^{2}-q_{z}^{2} & 2\left(q_{y} q_{z}-q_{s} q_{x}\right) \\
2\left(q_{x} q_{z}-q_{s} q_{y}\right) & 2\left(q_{y} q_{z}+q_{s} q_{x}\right) & q_{s}^{2}-q_{x}^{2}-q_{y}^{2}+q_{z}^{2}
\end{array}\right] \\
& =\left[\begin{array}{lll}
r_{11} & r_{12} & r_{13} \\
r_{21} & r_{22} & r_{23} \\
r_{31} & r_{32} & r_{33}
\end{array}\right]=R_{\text {desired }}
\end{aligned}
$$

$\Rightarrow q_{s}=\frac{1}{2} \sqrt{1+r_{11}+r_{22}+r_{33}}$ and $\vec{q}=\frac{1}{4 q_{s}}\left[\begin{array}{l}r_{32}-r_{23} \\ r_{13}-r_{31} \\ r_{21}-r_{12}\end{array}\right]$

Quaternions can be used to describe orientation and compose rotations like rotation matrices

- $C_{b}^{a} \Leftrightarrow \bar{q}_{b}^{a}$
- $C_{f}^{i}=R_{2} R_{1} R_{3} \Leftrightarrow \bar{q}_{f}^{i}=\bar{q}_{2} \otimes \bar{q}_{1} \otimes \bar{q}_{3}$
- Quaternion inverse or conjugate

$$
\bar{q}^{-1}=\bar{q}^{*}=\left[\begin{array}{c}
q_{s} \\
-q_{x} \\
-q_{y} \\
-q_{z}
\end{array}\right]
$$

- Vector transformation (change of coordinates)

Define a "pure" vector

$$
\breve{v}=\left[\begin{array}{c}
0 \\
\vec{v}
\end{array}\right]
$$

then a vector \vec{v}^{p} written in the p-frame may be transformed to the i-frame using

$$
\breve{v}^{i}=\bar{q} \otimes \breve{v}^{p} \otimes \bar{q}^{-1}
$$

Quaternion multiplication - first type \otimes

$$
\bar{r}=\bar{q} \otimes \bar{p}=[\bar{q} \otimes] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}+\vec{q} \times \vec{p}
\end{array}\right]
$$

where implementation via matrix multiplication achieved by defining

$$
[\bar{q} \otimes]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & -q_{z} & q_{y} \\
q_{y} & q_{z} & q_{s} & -q_{x} \\
q_{z} & -q_{y} & q_{x} & q_{s}
\end{array}\right]
$$

Note multiplication does not commute.

Quaternion multiplication - second type \circledast (useful to re-order multiplication when certain factorizations and coordinatizations needed)

$$
\bar{r}=\bar{q} \circledast \bar{p}=[\bar{q} \circledast] \bar{p}=\left[\begin{array}{c}
q_{s} p_{s}-\vec{q} \cdot \vec{p} \\
q_{s} \vec{p}+p_{s} \vec{q}-\vec{q} \times \vec{p}
\end{array}\right]
$$

where

$$
\bar{q} \otimes \bar{p}=\bar{p} \circledast \bar{q}
$$

and

$$
[\bar{q} \circledast]=\left[\begin{array}{cccc}
q_{s} & -q_{x} & -q_{y} & -q_{z} \\
q_{x} & q_{s} & q_{z} & -q_{y} \\
q_{y} & -q_{z} & q_{s} & q_{x} \\
q_{z} & q_{y} & -q_{x} & q_{s}
\end{array}\right]
$$

Quaternions - Identities

Identities for quaternions

$$
\begin{gathered}
{\left[\bar{q}^{-1} \otimes\right]=[\bar{q} \otimes]^{-1}=[\bar{q} \otimes]^{T}} \\
{[\bar{q}-1 \circledast]=[\bar{q} \circledast]^{-1}=[\bar{q} \circledast]^{T}} \\
{[\bar{q} \otimes]=e^{\frac{1}{2}[\breve{k} \otimes]}=\cos (\theta / 2) \mathcal{I}+\frac{1}{2}[\breve{k} \otimes] \frac{\sin (\theta / 2)}{\theta / 2}} \\
{[\bar{q} \circledast]=e^{\frac{1}{2}[\breve{k} \circledast]}=\cos (\theta / 2) \mathcal{I}+\frac{1}{2}[\breve{k} \circledast] \frac{\sin (\theta / 2)}{\theta / 2}} \\
{[\bar{q} \otimes][\bar{q} \circledast]^{-1}=[\bar{q} \circledast]^{-1}[\bar{q} \otimes]=\left[\begin{array}{cc}
1 & 0 \\
0 & \mathcal{T}(\bar{q})
\end{array}\right]}
\end{gathered}
$$

$$
\begin{gathered}
\bar{q} \otimes \bar{p} \otimes \bar{r}=(\bar{q} \otimes \bar{p}) \otimes \bar{r}=\bar{q} \otimes(\bar{p} \otimes \bar{r}) \\
\bar{q} \circledast \bar{p} \circledast \bar{r}=(\bar{q} \circledast \bar{p}) \circledast \bar{r}=\bar{q} \circledast(\bar{p} \circledast \bar{r}) \\
(\bar{q} \circledast \bar{p}) \otimes \bar{r} \neq \bar{q} \circledast(\bar{p} \otimes \bar{r}) \\
(\bar{q} \otimes \bar{p}) \circledast \bar{r} \neq \bar{q} \otimes(\bar{p} \circledast \bar{r})
\end{gathered}
$$

