EE 565: Position, Navigation and Timing

Navigation Mathematics: Translation

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
February 1, 2018

(1) Vector Notation for Translation
(2) Translation Between More Than Two Coordinate Frames
(3) Example

Define the vector $\vec{r}_{\alpha \beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

- specifies translation between frames

Define the vector $\vec{r}_{\alpha \beta}$ from the origin of $\{\alpha\}$ to the origin of $\{\beta\}$.

- specifies translation between frames

Now have means (and notation) to describe rotation and translation between coordinate frames.

- Resolve, i.e., coordinatize, $\vec{r}_{\alpha \beta}$ wrt frame $\{\beta\}$.

Same vector, so same "direction" and length.

Reverse vector \vec{r}, i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

- notation:

Reverse vector \vec{r}, i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

- notation: $\vec{r}_{\beta \alpha}=$

Reverse vector \vec{r}, i.e., now from origin of $\{\beta\}$ to origin of $\{\alpha\}$.

- notation: $\vec{r}_{\beta \alpha}=-\vec{r}_{\alpha \beta}$

Consider three coordinate systems $\{a\},\{b\},\{c\}$ that have translation and rotation relative to each other.

- Knowing relationships between frames $\{a\},\{b\}$, and $\{c\}$, i.e., $\vec{r}_{a b}, \vec{r}_{b c}, \vec{r}_{a c}, C_{b}^{a}, C_{c}^{b}$, and C_{c}^{a}, location of point p can be described in any frame, i.e., \vec{p}^{a} or \vec{p}^{b} or \vec{p}^{c}.

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

$$
\text { - } \vec{p}_{a p}=
$$

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

$$
\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p}
$$

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

- $\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p} \ln$ what frame?

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

- $\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p} \ln$ what frame?
- $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ or
$\vec{p}_{a p}^{b}=\vec{r}_{a b}^{b}+\vec{p}_{b p}^{b}$ or
$\vec{p}_{a p}^{c}=\vec{r}_{a b}^{c}+\vec{p}_{b p}^{c}$

Determine the location of the point p relative to $\{a\}$ given location of point p is known relative to $\{b\}$.

- $\vec{p}_{a p}=\vec{r}_{a b}+\vec{p}_{b p} \ln$ what frame?
- $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ or
$\vec{p}_{a p}^{b}=\vec{r}_{a b}^{b}+\vec{p}_{b p}^{b}$ or
$\vec{p}_{a p}^{c}=\vec{r}_{a b}^{c}+\vec{p}_{b p}^{c}$

Shorthand notation: $\vec{p}^{a} \equiv \vec{p}_{a p}^{a}$

$-{ }^{-}$

Given $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ and/or the diagram, how would one find $\vec{p}_{b p}^{b}$?

Given $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ and/or the diagram, how would one find $\vec{p}_{b p}^{b}$?

- use given relationship or
 vector addition

Given $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ and/or the diagram, how would one find $\vec{p}_{b p}^{b}$?

- use given relationship or vector addition

$$
\Rightarrow \vec{p}_{b p}^{a}=\vec{p}_{a p}^{a}-\vec{r}_{a b}^{a}
$$

Given $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ and/or the diagram, how would one find $\vec{p}_{b p}^{b}$?

- use given relationship or vector addition
$\Rightarrow \vec{p}_{b p}^{a}=\vec{p}_{a p}^{a}-\vec{r}_{a b}^{a}$
- now need to reference to $\{b\}$

Given $\vec{p}_{a p}^{a}=\vec{r}_{a b}^{a}+\vec{p}_{b p}^{a}$ and/or the diagram, how would one find $\vec{p}_{b p}^{b}$?

- use given relationship or vector addition

$$
\Rightarrow \vec{p}_{b p}^{a}=\vec{p}_{a p}^{a}-\vec{r}_{a b}^{a}
$$

- now need to reference to $\{b\}$

$$
\begin{aligned}
& C_{a}^{b} \vec{p}_{b p}^{a}=C_{a}^{b}\left(\vec{p}_{a p}^{a}-\vec{r}_{a b}^{a}\right) \\
& \Rightarrow \vec{p}_{b p}^{b}=\vec{p}_{a p}^{b}-\vec{r}_{a b}^{b}
\end{aligned}
$$

It is important to remember difference between recoordinatizing a vector and finding a location wrt a different frame.

It is important to remember difference between recoordinatizing a vector and finding a location wrt a different frame.

- Recoordinatizing: $\vec{p}_{a p}^{c}=C_{a}^{c} \vec{p}_{a p}^{a}$ (only frame of reference changes)

It is important to remember difference between recoordinatizing a vector and finding a location wrt a different frame.

- Recoordinatizing: $\vec{p}_{a p}^{c}=C_{a}^{c} \vec{p}_{a p}^{a}$ (only frame of reference changes)
- Location wrt different frame: $\vec{p}_{c p}^{c}=\vec{r}_{c b}^{c}+C_{b}^{c} \vec{r}_{b a}^{b}+C_{a}^{c} \vec{p}_{a p}^{a}$ (vector addition in same frame) $\neq C_{a}^{c} \vec{p}_{a p}^{a}$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations. $\vec{p}_{c p}$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations.

$$
\begin{aligned}
& \vec{p}_{c p} \\
&=-\vec{r}_{b c}+\vec{p}_{b p}
\end{aligned}
$$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations.

$$
\begin{aligned}
\vec{p}_{c p} & \\
& =-\vec{r}_{b c}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{r}_{a b}+\vec{p}_{b p}
\end{aligned}
$$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations.

$$
\begin{aligned}
\vec{p}_{c p} & \\
& =-\vec{r}_{b c}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{r}_{a b}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{p}_{a p}
\end{aligned}
$$

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations.

$$
\vec{p}_{c p}
$$

$$
\begin{aligned}
& =-\vec{r}_{b c}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{r}_{a b}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{p}_{a p}
\end{aligned}
$$

- In what frame?

Determine location of point p from frame $\{c\}$; \Rightarrow looking for $\vec{p}_{c p}$

Many approaches given labeled vectors/translations.

$$
\vec{p}_{c p}
$$

$$
\begin{aligned}
& =-\vec{r}_{b c}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{r}_{a b}+\vec{p}_{b p} \\
& =-\vec{r}_{a c}+\vec{p}_{a p}
\end{aligned}
$$

- In what frame? doesn't matter, so long as same
- Can always recoordinatize given $C_{b}^{a}, C_{c}^{b}, C_{a}^{c}$

Consider the three coordinate frames $\{a\},\{b\},\{c\}$ shown with the rotations and translations between some frames given.

Consider the three coordinate frames $\{a\},\{b\},\{c\}$ shown with the rotations and translations between some frames given.

Example - Find C_{c}^{a}

$$
C_{c}^{a}=C_{b}^{a} C_{c}^{b}=R_{z, 50^{\circ}} R_{y,-30^{\circ}}
$$

$$
\begin{aligned}
\vec{r}_{a c}^{a} & =\vec{r}_{a b}^{a}+\vec{r}_{b c}^{a} \\
& =\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b} \\
& =\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+R_{z, 50^{\circ}}\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
0 \\
0 \\
2
\end{array}\right]+\left[\begin{array}{ccc}
\cos 50^{\circ} & -\sin 50^{\circ} & 0 \\
\sin 50^{\circ} & \cos 50^{\circ} & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
3 \\
0 \\
0
\end{array}\right] \\
& =\left[\begin{array}{l}
1.93 \\
2.30 \\
2.00
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
\vec{r}_{c a}^{c} & =-\vec{r}_{a c}^{c} \\
& =-C_{a}^{c} \vec{r}_{a c}^{a} \\
& =-\left[C_{c}^{a}\right]^{T} \vec{r}_{a c}^{a} \\
& =-\left[R_{z, 50^{\circ}} R_{y,-30^{\circ}}\right]^{T}\left[\begin{array}{l}
1.93 \\
2.30 \\
2.00
\end{array}\right] \\
& =\left[\begin{array}{c}
-3.59 \\
0 \\
-0.232
\end{array}\right]
\end{aligned}
$$

