Lecture

Navigation Mathematics: Angular and Linear Velocity

EE 565: Position, Navigation and Timing

Lecture Notes Update on February 6, 2018
Kevin Wedeward and Aly El-Osery, Electrical Engineering Dept., New Mexico Tech In collaboration with
Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University

Lecture Topics

Contents

1 Review 1
2 Intro to Vel 2
$3 \frac{d}{d t} C$ and ω - I 2
$4 \frac{d}{d t} C$ and ω - II 4
5 Properties of SS Matrices $\quad 6$
6 Add Angular Velocity 7
7 Pos, Vel \&r Accel 7

1 Review

Review

- translation between frames $\{a\}$ and $\{c\}$:

$$
\vec{r}_{a c}=\vec{r}_{a b}+\vec{r}_{b c}
$$

- written wrt/frame $\{a\}$

$$
\begin{aligned}
\vec{r}_{a c}^{a} & =\vec{r}_{a b}^{a}+\vec{r}_{b c}^{a} \\
& =\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
\end{aligned}
$$

2 Introduction to Velocity

Introduction to Velocity

- Given relationship for translation between moving (rotating and translating) frames

$$
\vec{r}_{a c}^{a}=\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
$$

what is linear velocity between frames?

$$
\begin{aligned}
\dot{\vec{r}}_{a c}^{a} & \equiv \frac{d}{d t} \vec{r}_{a c}^{a} \\
& =\frac{d}{d t}\left(\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}\right) \\
& =\dot{\vec{r}}_{a b}^{a}+\dot{C}_{b}^{a} \vec{r}_{b c}^{b}+C_{b}^{a} \dot{\vec{r}}_{b c}^{b}
\end{aligned}
$$

- Why is $\dot{C}_{b}^{a} \neq 0$ in general? Recoordinatization of $\vec{r}_{b c}^{b}$ is time-dependent.
- \dot{C}_{b}^{a} is directly related to angular velocity between frames $\{a\}$ and $\{b\}$.

3 Derivative of Rotation Matrix and Angular Velocity - Approach I

First approach to $\frac{d}{d t} C$ and angular velocity
Given a rotation matrix C, one of its properties is

$$
\left[C_{b}^{a}\right]^{T} C_{b}^{a}=C_{b}^{a}\left[C_{b}^{a}\right]^{T}=\mathcal{I}
$$

Taking the time-derivative of the "right-inverse" property

$$
\begin{gathered}
\frac{d}{d t}\left(C_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)=\frac{d}{d t} \mathcal{I} \\
\Rightarrow \underbrace{\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}}_{\Omega_{a b}^{a}}+\underbrace{\left(\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)^{T}}_{\left[\Omega_{a b}^{a}\right]^{T}} C_{b}^{a}\left[\dot{C}_{b}^{a}\right]^{T}
\end{gathered}=0
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Define this skew-symmetric matrix $\Omega_{a b}^{a}$

$$
\Omega_{a b}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right]=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

Note $\Omega_{a b}^{a}=\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}$

$$
\Rightarrow \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}
$$

is a means of finding derivative of rotation matrix provided we can further understand $\Omega_{a b}^{a}$.

First approach to $\frac{d}{d t} C$ and angular velocity
Now for some insight into physical meaning of $\Omega_{a b}^{a}$.

- Consider a point p on a rigid body rotating with angular velocity $\vec{\omega}=\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}=$ $\dot{\theta} \vec{k}=\dot{\theta}\left[k_{x}, k_{y}, k_{z}\right]^{T}$ with \vec{k} a unit vector.

First approach to $\frac{d}{d t} C$ and angular velocity

From mechanics, linear velocity \vec{v}_{p} of point is

$$
\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \times\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{c}
\omega_{y} r_{z}-\omega_{z} r_{y} \\
\omega_{z} r_{x}-\omega_{x} r_{z} \\
\omega_{x} r_{y}-\omega_{y} r_{x}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]}_{?}\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

First approach to $\frac{d}{d t} C$ and angular velocity

From mechanics, linear velocity \vec{v}_{p} of point is

$$
\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \times\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{c}
\omega_{y} r_{z}-\omega_{z} r_{y} \\
\omega_{z} r_{x}-\omega_{x} r_{z} \\
\omega_{x} r_{y}-\omega_{y} r_{x}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]}_{\Omega=[\vec{\omega} \times]}\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

$\Rightarrow \Omega$ represents angular velocity and performs cross product

First approach to $\frac{d}{d t} C$ and angular velocity
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{a b}$ between them.

Start with position

$$
\vec{r}_{a p}^{a}=\underbrace{\vec{r}_{a b}^{a}}_{0}+C_{b}^{a} \vec{r}_{b p}^{b}
$$

and take derivative wrt time

$$
\begin{aligned}
\dot{\vec{r}}_{a p}^{a} & =\underbrace{\dot{C}_{b}^{a}}_{\Omega_{a b}^{a} C_{b}^{a}} \vec{r}_{b p}^{b}+\underbrace{C_{b}^{a} \dot{\vec{r}}_{b p}^{b}}_{0} \\
& =\Omega_{a b}^{a} C_{b}^{a} \vec{r}_{b p}^{b} \\
& =\Omega_{a b}^{a} \vec{r}_{b p}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right] \vec{r}_{b p}^{a}
\end{aligned}
$$

from which it is observed (compare to $\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}$) that $\Omega_{a b}^{a}$ represents cross product with angular velocity $\vec{\omega}_{a b}^{a}$.

4 Derivative of Rotation Matrix and Angular Velocity - Approach II

Second approach to $\frac{d}{d t} C$ and angular velocity

- Another approach to developing derivative of rotation matrix and angular velocity is based upon angle-axis representation of orientation and rotation matrix as exponential.
- This approach is included in notes.
\qquad
Second approach to $\frac{d}{d t} C$ and angular velocity
- Since the relative and fixed axis rotations must be performed in a particular order, their derivatives are somewhat challenging
- The angle-axis format, however, is readily differentiable as we can encode the 3 parameters by

$$
\vec{K} \equiv \vec{k}(t) \theta(t)=\left[\begin{array}{c}
K_{1}(t) \\
K_{2}(t) \\
K_{3}(t)
\end{array}\right]
$$

where $\theta=\|\vec{K}\|$

- Hence,

$$
\frac{d}{d t} \vec{K}(t)=\left[\begin{array}{c}
\dot{K}_{1}(t) \\
\dot{K}_{2}(t) \\
\dot{K}_{3}(t)
\end{array}\right]
$$

Second approach to $\frac{d}{d t} C$ and angular velocity

- For a sufficiently "small" time interval we can often consider the axis of rotation to be \approx constant (i.e., $\vec{k}(t)=\vec{k}$)

$$
\begin{aligned}
\frac{d}{d t} \vec{K}(t) & \approx \frac{d}{d t}(\vec{k} \theta(t)) \\
& =\vec{k} \dot{\theta}(t)
\end{aligned}
$$

- This is referred to as the angular velocity $(\vec{\omega}(t))$ or the so called "body reference" angular velocity
Angular Velocity

$$
\vec{\omega}(t) \equiv \vec{k} \dot{\theta}(t)
$$

Second approach to $\frac{d}{d t} C$ and angular velocity

- This definition of the angular velocity can also be related back to the rotation matrix. Recalling that

$$
C_{b}^{a}(t)=R_{\vec{k}_{a b}^{a}, \theta(t)}=e^{\kappa_{a b}^{a} \theta(t)}
$$

- Hence,

$$
\begin{aligned}
& \frac{d}{d t} C_{b}^{a}(t)=\frac{d}{d t} e^{\kappa_{a b}^{a} \theta(t)} \\
&=\frac{\partial e^{\kappa_{a b}^{a} \theta(t)}}{\partial \theta} \frac{d \theta}{d t} \\
&=\kappa_{a b}^{a} \epsilon^{\kappa_{a b}^{a} \theta(t)} \dot{\theta}(t) \\
&=\left(\kappa_{a b}^{a} \dot{\theta}(t)\right) C_{b}^{a}(t) \\
& \Rightarrow \dot{C}_{b}^{a}(t)\left[C_{b}^{a}(t)\right]^{T}=\kappa_{a b}^{a} \dot{\theta}(t)
\end{aligned}
$$

Second approach to $\frac{d}{d t} C$ and angular velocity
Notice that

$$
\begin{aligned}
\kappa_{a b}^{a} \dot{\theta}(t) & =\operatorname{Skew}\left[k_{a b}^{a}\right] \dot{\theta}(t) \\
& =\operatorname{Skew}\left[k_{a b}^{a} \dot{\theta}(t)\right] \\
& =\operatorname{Skew}\left[\vec{\omega}_{a b}^{a}\right]=\Omega_{a b}^{a}
\end{aligned}
$$

Therefore,

$$
\dot{C}_{b}^{a}(t)\left[C_{b}^{a}(t)\right]^{T}=\Omega_{a b}^{a}
$$

or

$$
\dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}
$$

Second approach to $\frac{d}{d t} C$ and angular velocity
Note

$$
\kappa \vec{a}=\left[\begin{array}{ccc}
0 & -k_{3} & k_{2} \\
k_{3} & 0 & -k_{1} \\
-k_{2} & k_{1} & 0
\end{array}\right]\left[\begin{array}{l}
a_{1} \\
a_{2} \\
a_{3}
\end{array}\right]=\left[\begin{array}{l}
k_{2} a_{3}-k_{3} a_{2} \\
k_{3} a_{1}-k_{1} a_{3} \\
k_{1} a_{2}-k_{2} a_{1}
\end{array}\right]=\vec{k} \times \vec{a}
$$

Hence, we can think of the skew-symmetric matrix as

$$
\kappa=[\vec{k} \times]
$$

or, in the case of angular velocity

$$
\Omega=[\vec{\omega} \times]
$$

5 Properties of Skew-symmetric Matrices

Properties of Skew-symmetric Matrices

$$
\begin{aligned}
C \Omega C^{T} \vec{b} & =C\left[\vec{\omega} \times\left(C^{T} \vec{b}\right)\right] \\
& =C \vec{\omega} \times\left(C C^{T} \vec{b}\right) \\
& =C \vec{\omega} \times \vec{b} \\
& =[C \vec{\omega} \times] \vec{b}
\end{aligned}
$$

Therefore (from above),

$$
C \Omega C^{T}=C[\vec{\omega} \times] C^{T}=[C \vec{\omega} \times]
$$

and (via distributive property)

$$
C[\vec{\omega} \times]=[C \vec{\omega} \times] C
$$

noting both $\vec{\omega}$ and vector with which cross-product will be taken are assumed to be in the same coordinate frame and thus both need to be recoordinatized.

Properties of Skew-symmetric Matrices

$$
\begin{aligned}
\dot{C}_{b}^{a} & =\Omega_{a b}^{a} C_{b}^{a} \\
& =\left[\vec{\omega}_{a b}^{a} \times\right] C_{b}^{a} \\
& =\left[C_{b}^{a} \vec{\omega}_{a b}^{b} \times\right] C_{b}^{a} \\
& =C_{b}^{a}\left[\vec{\omega}_{a b}^{b} \times\right] \\
& =C_{b}^{a} \Omega_{a b}^{b} \\
\Rightarrow \dot{C}_{b}^{a} & =\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b}
\end{aligned}
$$

Summary of Angular Velocity and Notation
Angular velocity can be

- described as a vector
- the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $\vec{\omega}_{a b}^{c}$
$-\vec{\omega}_{a b}=-\vec{\omega}_{b a}$
- described as a skew-symmetric matrix $\Omega_{a b}^{c}=\left[\vec{\omega}_{a b}^{c} \times\right]$
- the skew-symmetric matrix is equivalent to the vector cross product when premultiplying another vector
- related to the derivative of the rotation matrix

$$
\begin{aligned}
& \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b} \\
& \dot{C}_{b}^{a}=-\Omega_{b a}^{a} C_{b}^{a}=-C_{b}^{a} \Omega_{b a}^{b}
\end{aligned}
$$

6 Propagation/Addition of Angular Velocity

Propagation/Addition of Angular Velocity
Consider the derivative of the composition of rotations $C_{2}^{0}=C_{1}^{0} C_{2}^{1}$.

$$
\begin{array}{rll}
& & \frac{d}{d t} C_{2}^{0} \\
\Rightarrow & =\frac{d}{d t} C_{1}^{0} C_{2}^{1} \\
\Rightarrow \quad & \dot{C}_{2}^{0} & =\dot{C}_{1}^{0} C_{2}^{1}+C_{1}^{0} \dot{C}_{2}^{1} \\
\Rightarrow & \Omega_{02}^{0} C_{2}^{0} & =\Omega_{01}^{0} C_{1}^{0} C_{2}^{1}+C_{1}^{0} C_{2}^{1} \Omega_{12}^{2} \\
\Rightarrow \quad & \quad\left[\vec{\omega}_{02}^{0} \times\right] & =\Omega_{01}^{0} C_{2}^{0}\left[C_{2}^{0}\right]^{T}+C_{2}^{0} \Omega_{12}^{2}\left[C_{2}^{0}\right]^{T} \\
\Rightarrow \quad & \vec{\omega}_{02}^{0} & =\vec{\omega}_{01}^{0}+\vec{\omega}_{12}^{0}
\end{array}
$$

\Rightarrow angular velocities (as vectors) add so long as resolved common coordinate system

7 Linear Position, Velocity and Acceleration

Linear Position

Consider the motion of a fixed point (origin of frame $\{2\}$) in a rotating frame (frame $\{1\}$) as seen from an inertial (frame $\{0\}$)

- frames $\{0\}$ and $\{1\}$ have the same origin
- frame $\{1\}$ rotates (about a unit vector \vec{k}) wrt frame $\{0\}$
- origin of frame $\{2\}$ is fixed wrt frame $\{1\}$

Position:

$$
\begin{aligned}
\vec{r}_{02}^{0}(t) & =\vec{r}_{01}^{0}(t)^{\overrightarrow{0}}+\vec{r}_{12}^{0}(t) \\
& =C_{1}^{0}(t) \vec{r}_{12}^{1}
\end{aligned}
$$

Linear Velocity
Linear velocity:

$$
\begin{aligned}
\dot{\vec{r}}_{02}^{0}(t) & =\frac{d}{d t} C_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\dot{C}_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\left[\vec{\omega}_{01}^{0} \times\right] C_{1}^{0}(t) \vec{r}_{12}^{1} \\
& =\vec{\omega}_{01}^{0} \times \vec{r}_{12}^{0}(t)
\end{aligned}
$$

Linear Acceleration

Linear acceleration:

Linear Position

We can get back to where we started ... motion (translation and rotation) between frames and their derivatives.

Translation (position) between frames $\{0\}$ and $\{1\}$:

$$
\begin{aligned}
\vec{r}_{02}^{0} & =\vec{r}_{01}^{0}+\vec{r}_{12}^{0} \\
& =\vec{r}_{01}^{0}+C_{1}^{0} \vec{r}_{12}^{1}
\end{aligned}
$$

Linear Velocity

Linear velocity:

$$
\begin{aligned}
\dot{\vec{r}}_{02}^{0}(t) & =\frac{d}{d t}\left(\vec{r}_{01}^{0}+C_{1}^{0} \vec{r}_{12}^{1}\right) \\
& =\dot{\vec{r}}_{01}^{0}+\dot{C}_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\Omega_{01}^{0} C_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\left[\vec{\omega}_{01}^{0} \times\right] C_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+C_{1}^{0} \overrightarrow{\vec{r}}_{12}^{1}
\end{aligned}
$$

Linear Acceleration

Linear acceleration:

$$
\begin{aligned}
\ddot{\vec{r}}_{02}^{0} & =\frac{d}{d t}\left(\dot{\vec{r}}_{01}^{0}+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+C_{1}^{0} \dot{\vec{r}}_{12}^{1}\right) \\
& =\ddot{\vec{r}}_{01}^{0}+\dot{\vec{\omega}}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(\dot{C}_{1}^{0} \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \dot{\vec{r}}_{12}^{1}\right)+\dot{C}_{1}^{0} \dot{\vec{r}}_{12}^{1}+C_{1}^{0} \ddot{\vec{r}}_{12}^{1}
\end{aligned}
$$

accel of $\{2\}$'s origin from $\{1\}$ in $\{0\}$

