EE 565: Position, Navigation and Timing

Navigation Mathematics: Angular and Linear Velocity

Kevin Wedeward Aly El-Osery
Electrical Engineering Department
New Mexico Tech Socorro, New Mexico, USA
In Collaboration with Stephen Bruder
Electrical and Computer Engineering Department
Embry-Riddle Aeronautical Univesity
Prescott, Arizona, USA
February 6, 2018

(1) Review
(2) Introduction to Velocity
(3) Derivative of Rotation Matrix and Angular Velocity - Approach I
(4) Derivative of Rotation Matrix and Angular Velocity - Approach II
(5) Properties of Skew-symmetric Matrices
(6) Propagation/Addition of Angular Velocity
(7) Linear Position, Velocity and Acceleration

- translation between frames $\{a\}$ and $\{c\}$:

$$
\vec{r}_{a c}=\vec{r}_{a b}+\vec{r}_{b c}
$$

- translation between frames $\{a\}$ and $\{c\}$:

$$
\vec{r}_{a c}=\vec{r}_{a b}+\vec{r}_{b c}
$$

- written wrt/frame $\{a\}$

$$
\begin{aligned}
\vec{r}_{a c}^{a} & =\vec{r}_{a b}^{a}+\vec{r}_{b c}^{a} \\
& =\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
\end{aligned}
$$

- Given relationship for translation between moving (rotating and translating) frames

$$
\vec{r}_{a c}^{a}=\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
$$

what is linear velocity between frames?

- Given relationship for translation between moving (rotating and translating) frames

$$
\vec{r}_{a c}^{a}=\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
$$

what is linear velocity between frames?

$$
\begin{aligned}
\dot{\vec{r}}_{a c}^{a} & \equiv \frac{d}{d t} \vec{r}_{a c}^{a} \\
& =\frac{d}{d t}\left(\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}\right) \\
& =\dot{\vec{r}}_{a b}^{a}+\dot{C}_{b}^{a} \vec{r}_{b c}^{b}+C_{b}^{a} \dot{\vec{r}}_{b c}^{b}
\end{aligned}
$$

- Why is $\dot{C}_{b}^{a} \neq 0$ in general?
- Given relationship for translation between moving (rotating and translating) frames

$$
\vec{r}_{a c}^{a}=\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
$$

what is linear velocity between frames?

$$
\begin{aligned}
\dot{\vec{r}}_{a c}^{a} & \equiv \frac{d}{d t} \vec{r}_{a c}^{a} \\
& =\frac{d}{d t}\left(\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}\right) \\
& =\dot{\vec{r}}_{a b}^{a}+\dot{C}_{b}^{a} \vec{r}_{b c}^{b}+C_{b}^{a} \dot{\vec{r}}_{b c}^{b}
\end{aligned}
$$

- Why is $\dot{C}_{b}^{a} \neq 0$ in general? Recoordinatization of $\vec{r}_{b c}^{b}$ is time-dependent.
- Given relationship for translation between moving (rotating and translating) frames

$$
\vec{r}_{a c}^{a}=\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}
$$

what is linear velocity between frames?

$$
\begin{aligned}
\dot{\vec{r}}_{a c}^{a} & \equiv \frac{d}{d t} \vec{r}_{a c}^{a} \\
& =\frac{d}{d t}\left(\vec{r}_{a b}^{a}+C_{b}^{a} \vec{r}_{b c}^{b}\right) \\
& =\dot{\vec{r}}_{a b}^{a}+\dot{C}_{b}^{a} \vec{r}_{b c}^{b}+C_{b}^{a} \dot{\vec{r}}_{b c}^{b}
\end{aligned}
$$

- Why is $\dot{C}_{b}^{a} \neq 0$ in general? Recoordinatization of $\vec{r}_{b c}^{b}$ is time-dependent.
- \dot{C}_{b}^{a} is directly related to angular velocity between frames $\{a\}$ and $\{b\}$.

Given a rotation matrix C, one of its properties is

$$
\left[C_{b}^{a}\right]^{T} C_{b}^{a}=C_{b}^{a}\left[C_{b}^{a}\right]^{T}=\mathcal{I}
$$

Taking the time-derivative of the "right-inverse" property

$$
\frac{d}{d t}\left(C_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)=\frac{d}{d t} \mathcal{I}
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Given a rotation matrix C, one of its properties is

$$
\left[C_{b}^{a}\right]^{T} C_{b}^{a}=C_{b}^{a}\left[C_{b}^{a}\right]^{T}=\mathcal{I}
$$

Taking the time-derivative of the "right-inverse" property

$$
\begin{gathered}
\frac{d}{d t}\left(C_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)=\frac{d}{d t} \mathcal{I} \\
\Rightarrow \underbrace{\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}}_{\Omega_{a b}^{a}}+\underbrace{\left(\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)^{T}}_{\left[\Omega_{a b}^{a}\right]^{T}} \underbrace{a}_{b}\left[\dot{C}_{b}^{a}\right]^{T}
\end{gathered}=0
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Given a rotation matrix C, one of its properties is

$$
\left[C_{b}^{a}\right]^{T} C_{b}^{a}=C_{b}^{a}\left[C_{b}^{a}\right]^{T}=\mathcal{I}
$$

Taking the time-derivative of the "right-inverse" property

$$
\begin{gathered}
\frac{d}{d t}\left(C_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)=\frac{d}{d t} \mathcal{I} \\
\Rightarrow \underbrace{\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}}_{\Omega_{a b}^{a}}+\underbrace{\left(\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)^{T}}_{\left(\Omega_{a b}^{a}\right]^{T}} C_{b}^{a}\left[\dot{C}_{b}^{a}\right]^{T}
\end{gathered}=0
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Given a rotation matrix C, one of its properties is

$$
\left[C_{b}^{a}\right]^{T} C_{b}^{a}=C_{b}^{a}\left[C_{b}^{a}\right]^{T}=\mathcal{I}
$$

Taking the time-derivative of the "right-inverse" property

$$
\begin{gathered}
\frac{d}{d t}\left(C_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)=\frac{d}{d t} \mathcal{I} \\
\Rightarrow \underbrace{\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}}_{\Omega_{a b}^{a}}+\underbrace{\left(\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}\right)^{T}}_{\left[\Omega_{a b}^{a}\right]^{T}} \\
C_{b}^{a}\left[\dot{C}_{b}^{a}\right]^{T}
\end{gathered}=0
$$

First approach to $\frac{d}{d t} C$ and angular velocity

Define this skew-symmetric matrix $\Omega_{a b}^{a}$

$$
\Omega_{a b}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right]=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

First approach to $\frac{d}{d t} C$ and angular velocity

Define this skew-symmetric matrix $\Omega_{a b}^{a}$

$$
\Omega_{a b}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right]=\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]
$$

Note $\Omega_{a b}^{a}=\dot{C}_{b}^{a}\left[C_{b}^{a}\right]^{T}$

$$
\Rightarrow \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}
$$

is a means of finding derivative of rotation matrix provided we can further understand $\Omega_{a b}^{a}$.

Now for some insight into physical meaning of $\Omega_{a b}^{a}$.

- Consider a point p on a rigid body rotating with angular velocity $\vec{\omega}=\left[\omega_{x}, \omega_{y}, \omega_{z}\right]^{T}=\dot{\theta} \vec{k}=\dot{\theta}\left[k_{x}, k_{y}, k_{z}\right]^{T}$ with \vec{k} a unit vector.

First approach to $\frac{d}{d t} C$ and angular velocity

From mechanics, linear velocity \vec{v}_{p} of point is

First approach to $\frac{d}{d t} C$ and angular velocity

From mechanics, linear velocity \vec{v}_{p} of point is

$$
\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}=\left[\begin{array}{c}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \times\left[\begin{array}{c}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{c}
\omega_{y} r_{z}-\omega_{z} r_{y} \\
\omega_{z} r_{x}-\omega_{x} r_{z} \\
\omega_{x} r_{y}-\omega_{y} r_{x}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]}_{?}\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

From mechanics, linear velocity \vec{v}_{p} of point is

$$
\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}=\left[\begin{array}{l}
\omega_{x} \\
\omega_{y} \\
\omega_{z}
\end{array}\right] \times\left[\begin{array}{l}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]=\left[\begin{array}{l}
\omega_{y} r_{z}-\omega_{z} r_{y} \\
\omega_{z} r_{x}-\omega_{x} r_{z} \\
\omega_{x} r_{y}-\omega_{y} r_{x}
\end{array}\right]=\underbrace{\left[\begin{array}{ccc}
0 & -\omega_{z} & \omega_{y} \\
\omega_{z} & 0 & -\omega_{x} \\
-\omega_{y} & \omega_{x} & 0
\end{array}\right]}_{\Omega=[\vec{\omega} \times]}\left[\begin{array}{c}
r_{x} \\
r_{y} \\
r_{z}
\end{array}\right]
$$

$\Rightarrow \Omega$ represents anqular velocity and performs cross product

First approach to $\frac{d}{d t} C$ and angular velocity
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{a b}$ between them.

First approach to $\frac{d}{d t} C$ and angular velocity
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{a b}$ between them.

Start with position

$$
\vec{r}_{a p}^{a}=\underbrace{\vec{r}_{a b}^{a}}_{0}+C_{b}^{a} \vec{r}_{b p}^{b}
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{a b}$ between them.

and take derivative wrt time

$$
\begin{aligned}
\dot{\vec{r}}_{a p}^{a} & =\underbrace{\dot{C}_{b}^{a}}_{\Omega_{a b}^{a} C_{b}^{a}} \vec{r}_{b p}^{b}+\underbrace{C_{b}^{a} \dot{\vec{r}}_{b p}^{b}}_{0} \\
& =\Omega_{a b}^{a} C_{b}^{a} \vec{r}_{b p}^{b} \\
& =\Omega_{a b}^{a} \vec{r}_{b p}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right] \vec{r}_{b p}^{a}
\end{aligned}
$$

Start with position

$$
\vec{r}_{a p}^{a}=\underbrace{\vec{r}_{a b}^{a}}_{0}+C_{b}^{a} \vec{r}_{b p}^{b}
$$

First approach to $\frac{d}{d t} C$ and angular velocity
Now let's add fixed frame $\{a\}$ and rotating frame $\{b\}$ attached to moving body such that there is angular velocity $\vec{\omega}_{a b}$ between them.

Start with position

$$
\vec{r}_{a p}^{a}=\underbrace{\vec{r}_{a b}^{a}}_{0}+C_{b}^{a} \vec{r}_{b p}^{b}
$$

and take derivative wrt time

$$
\begin{aligned}
\dot{\vec{r}}_{a p}^{a} & =\underbrace{\dot{C}_{b}^{a}}_{\Omega_{a b}^{a} C_{b}^{a}} \vec{r}_{b p}^{b}+\underbrace{C_{b}^{a} \dot{\vec{r}}_{b p}^{b}}_{0} \\
& =\Omega_{a b}^{a} C_{b}^{a} \vec{r}_{b p}^{b} \\
& =\Omega_{a b}^{a} \vec{r}_{b p}^{a}=\left[\vec{\omega}_{a b}^{a} \times\right] \vec{r}_{b p}^{a}
\end{aligned}
$$

from which it is observed (compare to $\vec{v}_{p}=\vec{\omega} \times \vec{r}_{p}$) that $\Omega_{a b}^{a}$ represents cross product with angular velocity $\vec{\omega}_{a b}^{a}$.

- Another approach to developing derivative of rotation matrix and angular velocity is based upon angle-axis representation of orientation and rotation matrix as exponential.
- This approach is included in notes.

$$
\begin{aligned}
C \Omega C^{\top} \vec{b} & =C\left[\vec{\omega} \times\left(C^{T} \vec{b}\right)\right] \\
& =C \vec{\omega} \times\left(C C^{T} \vec{b}\right) \\
& =C \vec{\omega} \times \vec{b} \\
& =[C \vec{\omega} \times] \vec{b}
\end{aligned}
$$

Therefore (from above),

$$
C \Omega C^{T}=C[\vec{\omega} \times] C^{T}=[C \vec{\omega} \times]
$$

and (via distributive property)

$$
C[\vec{\omega} \times]=[C \vec{\omega} \times] C
$$

noting both $\vec{\omega}$ and vector with which cross-product will be taken are assumed to be in the same coordinate frame and thus both need to be recoordinatized.

$$
\begin{aligned}
\dot{C}_{b}^{a} & =\Omega_{a b}^{a} C_{b}^{a} \\
& =\left[\vec{\omega}_{a b}^{a} \times\right] C_{b}^{a} \\
& =\left[C_{b}^{a} \vec{\omega}_{a b}^{b} \times\right] C_{b}^{a} \\
& =C_{b}^{a}\left[\vec{\omega}_{a b}^{b} \times\right] \\
& =C_{b}^{a} \Omega_{a b}^{b}
\end{aligned}
$$

$$
\Rightarrow \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b}
$$

Angular velocity can be

- described as a vector
- the angular velocity of the b-frame $w r$ the a-frame resolved in the c-frame, $\vec{\omega}_{a b}^{c}$
- $\vec{\omega}_{a b}=-\vec{\omega}_{b a}$

Angular velocity can be

- described as a vector
- the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $\vec{\omega}_{a b}^{c}$
- $\vec{\omega}_{a b}=-\vec{\omega}_{b a}$
- described as a skew-symmetric matrix $\Omega_{a b}^{c}=\left[\vec{\omega}_{a b}^{c} \times\right]$
- the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector

Angular velocity can be

- described as a vector
- the angular velocity of the b-frame wrt the a-frame resolved in the c-frame, $\vec{\omega}_{a b}^{c}$
- $\vec{\omega}_{a b}=-\vec{\omega}_{b a}$
- described as a skew-symmetric matrix $\Omega_{a b}^{c}=\left[\vec{\omega}_{a b}^{c} \times\right]$
- the skew-symmetric matrix is equivalent to the vector cross product when pre-multiplying another vector
- related to the derivative of the rotation matrix

$$
\begin{aligned}
& \dot{C}_{b}^{a}=\Omega_{a b}^{a} C_{b}^{a}=C_{b}^{a} \Omega_{a b}^{b} \\
& \dot{C}_{b}^{a}=-\Omega_{b a}^{a} C_{b}^{a}=-C_{b}^{a} \Omega_{b a}^{b}
\end{aligned}
$$

Consider the derivative of the composition of rotations $C_{2}^{0}=C_{1}^{0} C_{2}^{1}$.

$$
\begin{aligned}
& \quad \frac{d}{d t} C_{2}^{0} \\
& \Rightarrow \quad \dot{C}_{2}^{0}=\frac{d}{d t} C_{1}^{0} C_{2}^{1} \\
& \Rightarrow \quad \dot{C}_{1}^{0} C_{22}^{1}+C_{1}^{0} \dot{C}_{2}^{1} \\
& \Rightarrow \quad=\Omega_{01}^{0} C_{1}^{0} C_{2}^{1}+C_{1}^{0} C_{2}^{1} \Omega_{12}^{2} \\
& \Rightarrow \quad \Omega_{02}^{0} \\
& \Rightarrow \quad\left[\vec{\omega}_{02}^{0} \times\right]=\left[\vec{\omega}_{01}^{0} C_{2}^{0} \times\right]+\left[C_{2}^{0}\right]^{T}+C_{2}^{0} \Omega_{12}^{2}\left[C_{2}^{0}\right]^{T} \\
&\left.\Rightarrow \quad \vec{\omega}_{12}^{2} \times\right] \\
& 02=\vec{\omega}_{01}^{0}+\vec{\omega}_{12}^{0}
\end{aligned}
$$

\Rightarrow angular velocities (as vectors) add so long as resolved common coordinate system

We can get back to where we started ... motion (translation and rotation) between frames and their derivatives.

Translation (position) between frames $\{0\}$ and $\{1\}$:

$$
\begin{aligned}
\vec{r}_{02}^{0} & =\vec{r}_{01}^{0}+\vec{r}_{12}^{0} \\
& =\vec{r}_{01}^{0}+C_{1}^{0} \vec{r}_{12}^{1}
\end{aligned}
$$

Linear velocity:

$$
\begin{aligned}
\dot{\vec{r}}_{02}^{0}(t) & =\frac{d}{d t}\left(\vec{r}_{01}^{0}+C_{1}^{0} \vec{r}_{12}^{1}\right) \\
& =\dot{\vec{r}}_{01}^{0}+\dot{C}_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\Omega_{01}^{0} C_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\left[\vec{\omega}_{01}^{0} \times\right] C_{1}^{0} \vec{r}_{12}^{1}+C_{1}^{0} \dot{\vec{r}}_{12}^{1} \\
& =\dot{\vec{r}}_{01}^{0}+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+C_{1}^{0} \dot{\vec{r}}_{12}^{1}
\end{aligned}
$$

Linear acceleration:

$$
\begin{aligned}
\ddot{\vec{r}}_{02}^{0} & =\frac{d}{d t}\left(\dot{\vec{r}}_{01}^{0}+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+C_{1}^{0} \dot{r}_{12}^{1}\right) \\
& =\ddot{\vec{r}}_{01}^{0}+\dot{\vec{\omega}}_{01}^{0} \times\left(C_{1}^{0} \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(\dot{C}_{1}^{0} \vec{r}_{12}^{1}\right)+\vec{\omega}_{01}^{0} \times\left(C_{1}^{0} \dot{\vec{r}}_{12}^{1}\right)+\dot{C}_{1}^{0} \dot{r}_{12}^{1}+C_{1}^{0} \ddot{\vec{r}}_{12}^{1}
\end{aligned}
$$

