Lecture
 Navigation Equations: An Overview

EE 565: Position, Navigation and Timing

Lecture Notes Update on February 20, 2018

Aly El-Osery and Kevin Wedeward, Electrical Engineering Dept., New Mexico Tech
In collaboration with
Stephen Bruder, Electrical \& Computer Engineering, Embry-Riddle Aeronautical University

The Fundamental Problem

- The fundamental inertial navigation problem:
- Using inertial sensors (accels Er gyros) and an initial position and orientation, determine the vehicle's (i.e., body frame) current position, velocity, and attitude (PVA)
- Assumptions:

1. Know where we started (initial PVA: $\vec{r} ?{ }_{?}, \vec{v}{ }_{?}^{?},{ }_{b}, \mathcal{I} C_{b}^{?}$)
2. Inertial sensors $\left(\vec{\omega}_{i b}^{b}\right.$ and $\left.\vec{f}_{i b}^{b}\right)$
3. Have a gravity $\left(\vec{g}_{\dot{b}}^{?}\right)$ and/or gravitational $\left(\vec{\gamma}_{? b}^{?}\right)$ model

- Where am I? Current PVA?
* With respect to which frame?

Inertial Navigation

- The process of "integrating" angular velocity \& acceleration to determine one's position, velocity, and attitude (PVA)
- To measure the acceleration and angular velocity vectors we need at least 3 -gyros and 3 -accels
- Typically configured in an orthogonal triad
- The "mechanization" can be performed wrt:
- the ECI frame,
- the ECEF frame,
- the Nav frame, or

- the tangential frame.

ISA, IMU, \& INS

- An Inertial Navigation System (INS)
- ISA - Inertial Sensor Assembly
* Typically, 3-gyros, 3-accels, and basic electronics
- IMU - Inertial Measurement Unit
* ISA + compensation algorithms (i.e., basic processing)
- INS - Inertial Navigation System
* IMU + gravity model + "mechanization" algorithm

Mechanization Process

A Four Step Mechanization

1. Attitude Update

- Update the prior attitude using the current angular velocity

2. Transform the specific force measurement $\left(\vec{f}_{i b}^{?}=C_{b}^{?} \vec{f}_{i b}^{b}\right)$

- Typically, using the attitude computed in step 1

3. Update the velocity

- Essentially integrate the result from step 2 with the use of a gravity/gravitational model $\left(\vec{f}_{i b}=\vec{a}_{i b}-\vec{\gamma}_{i b}\right)$

4. Update the position

- integrate the result from step 3

A Four Step Mechanization

