EE 565: Position, Navigation, and Timing Power Spectral Density Estimation

Aly El-Osery Kevin Wedeward

Electrical Engineering Department, New Mexico Tech Socorro, New Mexico, USA

In Collaboration with Stephen Bruder Electrical and Computer Engineering Department Embry-Riddle Aeronautical Univesity Prescott, Arizona, USA

March 19, 2018

Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	d Timing	March 19, 2018	1 / 37

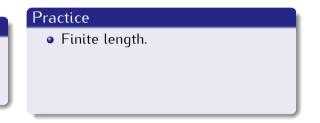
Sensors suffer from noise effects that can not be removed through calibration, consquently, we need to

- understand the nature of the noise
- be able to extract parameters from actual data
- develop models to mimic noise in simulation to provide performance capabilities

Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	s and Systems	Power Spectral I	
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing		March 19, 2018	2 / 37

Truth Infinitely long.

Outline				
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018 3 / 37


Truth	Practice
 Infinitely long. 	 Finite length.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral I	Density
Aly El-C	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	3 / 37

Truth

- Infinitely long.
- Continuous in time and value.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral Densi	ty
Aly El-C	Dsery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 19, 2018 3 /	37

Truth

- Infinitely long.
- Continuous in time and value.

Practice

- Finite length.
- Discrete in time and value.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral I	Density
Aly El-O	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-C	Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 19, 2018	3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-C	Dsery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	, and Timing	March 19, 2018	3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-C	Dsery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, ar	nd Timing	March 19, 2018	3 / 37

Truth

- Infinitely long.
- Continuous in time and value.
- Provides true distribution of power.

Practice

- Finite length.
- Discrete in time and value.
- Only approximation of distribution of power.

Let's make it more interesting

The signal is stochastic in nature.

Outline					
Aly El-C	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing	March 19, 2018	3 / 37

(1)

Assume the voltage across a resistor R is e(t) and is producing a current i(t). The instantaneous power per ohm is $p(t) = e(t)i(t)/R = i^2(t)$.

Total Energy

$$E = \lim_{T o \infty} \int_{- au}^T i^2(t) dt$$

Average Power

$$P = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} i^2(t) dt$$
⁽²⁾

	Review Material ●0000		Power Spectral D	
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, and Timing	March 19, 2018	4 / 37

Total Normalized Energy

$$E \triangleq \lim_{T \to \infty} \int_{-T}^{T} |x(t)|^2 dt = \int_{-\infty}^{\infty} |x(t)|^2 dt$$
(3)

Normalized Power

$$P \triangleq \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(4)

Outline	Review Material 0●000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral I	
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	, and Timing		March 19, 2018	5 / 37

Correlation

For Energy Signals

$$\phi(\tau) = \int_{-\infty}^{\infty} x(t) x(t+\tau) dt$$
(5)

For Power Signals

$$R(\tau) = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} x(t) x(t+\tau) dt$$
(6)

For Periodic Signals

$$R(\tau) = \frac{1}{T_0} \int_{T_0} x(t) x(t+\tau) dt$$
(7)

	Review Material ○○●○○				
Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	6 / 37

Rayleigh's Energy Theorem or Parseval's theorem

$$E = \int_{-\infty}^{\infty} |x(t)|^2 dt = \int_{-\infty}^{\infty} |X(F)|^2 dF$$
(8)

Energy Spectral Density

$$G(F) \triangleq |X(F)|^2$$
 (9)

with units of *volts*²-*sec*² or, if considered on a per-ohm basis, *watts*-*sec*/*Hz*=*joules*/*Hz*

Outline	Review Material ○○○●○	Random Signals and Noise	Discrete Signal	ls and Systems	Power Spectral I	Density
Aly El-	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	nd Timing		March 19, 2018	7 / 37

$$P = \int_{-\infty}^{\infty} S(F) dF = \lim_{T \to \infty} \frac{1}{2T} \int_{-T}^{T} |x(t)|^2 dt$$
(10)

where we define S(F) as the power spectral density with units of watts/Hz.

Outline	Review Material ○○○○●	Random Signals and Noise	Discrete Signals	s and Systems	Power Spectral I	Density
Aly El-Osery, Kevin Wedeward (NMT)		EE 565: Position, Navigation, and Timing			March 19, 2018	8 / 37

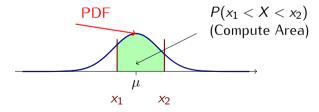
- Define an *experiment* with random *outcome*.
- Mapping of the outcome to a variable \Rightarrow random variable.
- Mapping of the outcome to a function \Rightarrow random function.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral I	Density
Aly El-C	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing		March 19, 2018	9 / 37

$$F_X(x) =$$
probability that $X \le x = P(X \le x)$ (11)

Describes the manner random variables take different values.

Outline	Review Material 00000	Random Signals and Noise ●000000000000	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	, and Timing		March 19, 2018	10 / 37

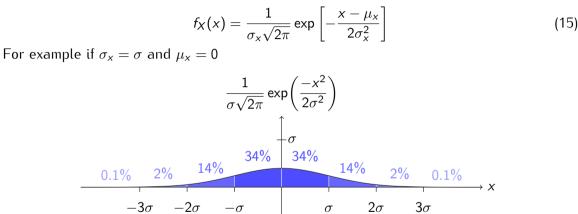

Probability Density Function (pdf)

$$f_X(x) = \frac{dF_X(x)}{dx} \tag{12}$$

and

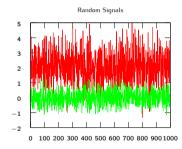
$$P(x_1 < X \le x_2) = F_X(x_2) - F_X(x_1) = \int_{x_1}^{x_2} f_X(x) dx$$
(13)

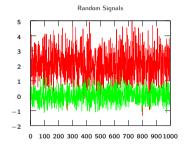
		Random Signals and Noise			
Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	11 / 37

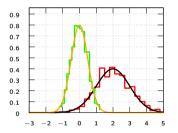


If the random variable X takes a set of discrete values x_i with probability p_i , the pdf of X is expressed in terms of Dirac delta functions, i.e.,

$$f_X(x) = \sum_i p_i \delta(x - x_i) \tag{14}$$


		Random Signals and Noise			
Aly El-Osei	ry, Kevin Wedeward (NMT)	EE 565: Position, Navigatior	n, and Timing	March 19, 2018	12 / 37


		Random Signals and Noise			
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing	March 19, 2018	13 / 37



		Random Signals and Noise			
Aly El-C	Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	14 / 37

Histogram and Pdf of random samples

Outline	Review Material 00000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	nd Timing		March 19, 2018	14 / 37

Mean of a Discrete RV

$$\bar{X} = \mathbb{E}[X] = \sum_{j=1}^{M} x_j P_j \tag{16}$$

Mean of a Continuous RV

$$\bar{X} = \mathbb{E}[X] = \int_{-\infty}^{\infty} x f_X(x) dx$$
(17)

Variance of a RV

$$\sigma_X^2 \triangleq \mathbb{E}\left\{ [X - \mathbb{E}(X)]^2 \right\} = \mathbb{E}[X^2] - \mathbb{E}^2[X]$$
(18)

		Random Signals and Noise			Density
Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	Timing	March 19, 2018	15 / 37

(19)

(20)

(21)

Given a two random variables X and Y.

Covariance

$$\mu_{XY} = \mathbb{E}\left\{ [X - ar{x}][Y - ar{Y}]
ight\} = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

Correlation Coefficient

$$p_{XY} = \frac{\mu_{XY}}{\sigma_X \sigma_Y}$$

Autocorrelation

$${\sf \Gamma}_X(au)=\mathbb{E}[X(t)X(t+ au)]$$

		Random Signals and Noise			
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	Timing	March 19, 2018	16 / 37

Terminology

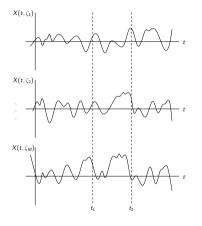


Figure: Sample functions of a random process

- $X(t, \zeta_i)$: sample function.
- The governing experiment: random or stochastic process.
- All sample functions: ensemble.
- $X(t_j, \zeta)$: random variable.

		Random Signals and Noise			
Aly El-	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	17 / 37

If the joint pdfs depend only on the time difference regardless of the time origin, then the random process is known as *stationary*.

For stationary process means and variances are independent of time and the covariance depends only on the time difference.

		Random Signals and Noise			
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	on, and Timing	March 19, 2018	18 / 37

If the joint pdfs depends on the time difference but the mean and variances are time-independent, then the random process is known as *wide-sense-stationary*.

		Random Signals and Noise			
Aly El-Osery, k	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	19 / 37

If the time statistics equals ensemble statistics, then the random process is known as *ergodic*.

Any statistic calculated by averaging of all members of an ergodic ensemble at a fixed time can also be calculated by using a single representative waveform and averging over all time.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-C	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	, and Timing		March 19, 2018	20 / 37

Given a sample function $X(t, \zeta_i)$ of a random process, we obtain the power spectral density by

$$S(F) \stackrel{\mathcal{F}}{\longleftrightarrow} \Gamma(\tau)$$
 (22)

i.e., for a wide sense stationary signal, the power spectral density and autocorrelation are Fourier transform pairs.

Outline	Review Material 00000	Random Signals and Noise ○○○○○○○○○●○	Discrete Signal	ls and Systems	Power Spectral	Density
Aly El-C	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing		March 19, 2018	21 / 37

(23)

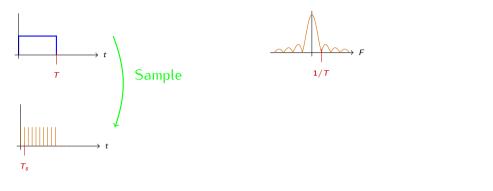
$$\xrightarrow{x(t)} H(F) \xrightarrow{y(t)}$$

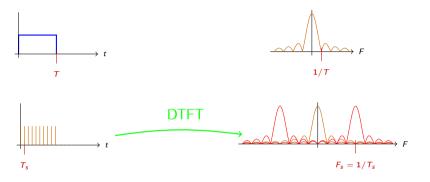
 $S_Y(F) = |H(F)|^2 S_X(F)$

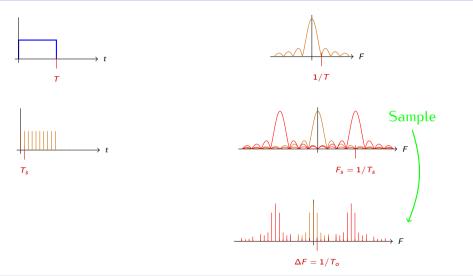
Noise Shaping

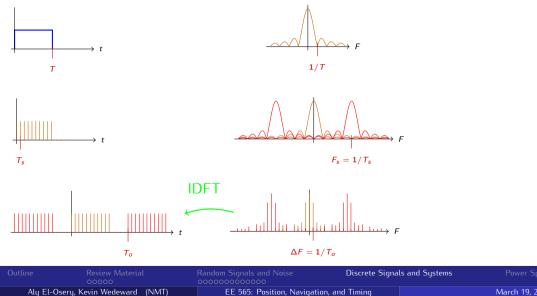
If x(t) is white noise, we can design the filter h(t) to "shape" the noise.

		Random Signals and Noise			
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	22 / 37


Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 19, 2018	23 / 37


			Discrete Signals and Systems		
Aly El-	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 19, 2018	23 / 37


Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-C	Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing	March 19, 2018	23 / 37


Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-O	Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing	March 19, 2018	23 / 37

			Discrete Signa	ls and Systems		
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	Timing		March 19, 2018	23 / 37

March 19, 2018 23 / 37

- Must sample more than twice bandwidth to avoid aliasing.
- \bullet FFT represents a periodic version of the time domain signal \rightarrow could have time domain aliasing.
- Number of points in FFT is the same as number of points in time domain signal.

			Discrete Signa	ls and Systems		
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing		March 19, 2018	24 / 37

What we want is

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_X(F)$$

For infinitely long signals.

				Power Spectral	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	25 / 37

What we want is

$$\Gamma_X(\tau) = \mathbb{E}[X(t)X(t+\tau)] \xrightarrow{\mathcal{CTFT}} S_X(F)$$

For infinitely long signals.

What we can compute is

$$\gamma_X(m) = \mathbb{E}[X(n)X(n+m)] \xrightarrow{\mathcal{DFT}} P_X(f)$$

For finite length signals.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	Power Spectral	Density
Aly El-G	Sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 19, 2018	25 / 37

As $N \to \infty$ and in the mean squared sense

Unbiased

Asymptotically the mean of the estimate approaches the true power.

Variance

Variance of the estimate approaches zero.

Resulting in a consistent estimate of the power spectrum.

				Power Spectral	Density
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 19, 2018	26 / 37

Periodogram

computed using 1/N times the magnitude squared of the FFT

$$\lim_{\mathsf{V}\to\infty}\mathbb{E}[\mathsf{P}_X(f)]=\mathsf{S}_X(f)$$

 $\lim_{N\to\infty} var[P_X(f)] = S_X^2(f)$

Outline	Review Material 00000	Random Signals and Noise 000000000000	Discrete Signal	s and Systems	Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	n, and Timing		March 19, 2018	27 / 37

Periodogram

computed using 1/N times the magnitude squared of the FFT

$$\lim_{N\to\infty}\mathbb{E}[P_X(f)]=S_X(f)$$

$$\lim_{N\to\infty} var[P_X(f)] = S_X^2(f)$$

Welch Method

computed by segmenting the data (allowing overlaps), windowing the data in each segment then computing the average of the resultant priodogram

$$\mathbb{E}[P_X(f)] = rac{1}{2\pi M U} S_X(f) \circledast W(f)$$
 $var[P_X(f)] pprox rac{9}{8L} S_X^2(f)$

				Power Spectral	Density
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 19, 2018	27 / 37

Assuming data length N, segment length M, Bartlett window, and 50% overlap

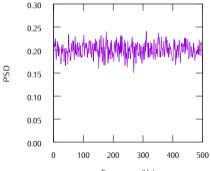
- FFT length = $M = 1.28/\Delta f = 1.28F_s/\Delta F$
- Resulting number of segments = $L = \frac{2N}{M}$
- Length of data collected in sec. = $\frac{1.28L}{2\Delta F}$

Outline	Review Material 00000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	nd Timing		March 19, 2018	28 / 37

[Pxx,f] = pwelch(x,window,noverlap,... nfft,fs,'range')

You can use [] in fields that you want the default to be used.

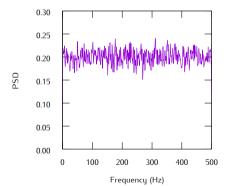
Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	s and Systems	Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing		March 19, 2018	29 / 37



Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

				Power Spectral	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	l Timing	March 19, 2018	30 / 37

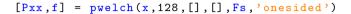
Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

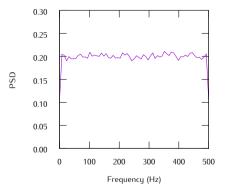

Frequency (Hz)

				Power Spectral I	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	30 / 37

l Density 30 / 37

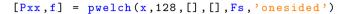
Fs = 1000; x = sqrt(0.1*Fs)*randn(1,100000); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

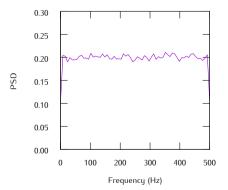

Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	ls and Systems	Power Spectral
Aly El-Osei	ry, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing		March 19, 2018



[Pxx,f] = pwelch(x,128,[],[],Fs,'onesided')

				stems Power Spectral De	ensity
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	31 / 37





Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	ls and Systems	Power Spectral	Density
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigat	ion, and Timing		March 19, 2018	31 / 37

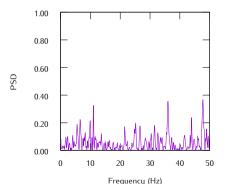
- Reduced window size.
- Variance is now smaller.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	, and Timing		March 19, 2018	31 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-Ose	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	32 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');



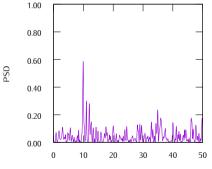
Frequency (Hz)

				Power Spectral	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	and Timing	March 19, 2018	32 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],[],Fs,'onesided');

- Window larger than length of data.
- Frequency components can't be resolved.
- Variance high.

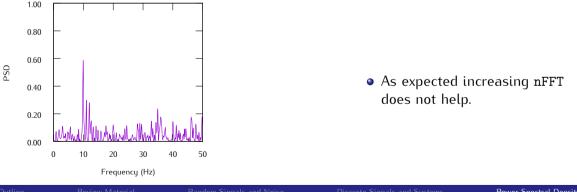
Outline	Review Material 00000	Random Signals and Noise	Discrete Signals	s and Systems	Power Spectral	Density
Aly El-C	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing		March 19, 2018	32 / 37



Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigati	on, and Timing	March 19, 2018	33 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

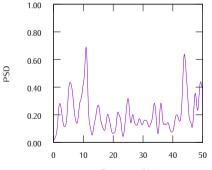


Frequency (Hz)

				Power Spectral	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	33 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,1024,[],4096,Fs,'onesided');

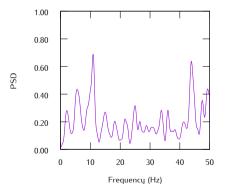
				Power Spectral	Density
Aly El-Osery, I	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	33 / 37



Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

				Power Spectral	Density
Aly El-Oser	y, Kevin Wedeward (NMT)	EE 565: Position, Navigation, a	nd Timing	March 19, 2018	34 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');



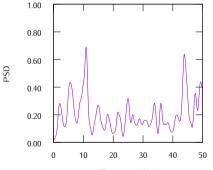
Frequency (Hz)

				Power Spectral	Density
Aly El-Osery,	Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	d Timing	March 19, 2018	34 / 37

Fs = 100; t = 0:1/Fs:5; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

- Decreasing the window size decreases the variance.
- Still can't resolve the two frequencies.

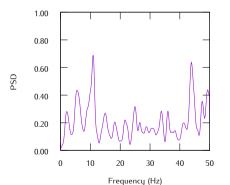
				Power Spectral	Density
Aly El-Osery, H	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	34 / 37



Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

	Review Material 00000	Random Signals and Noise		Power Spectral	Density
Aly El-Os	ery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	n, and Timing	March 19, 2018	35 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');



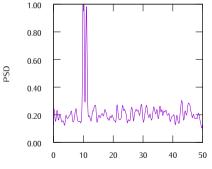
Frequency (H	z)
--------------	----

				Power Spectral	Density
Aly El-Ose	ry, Kevin Wedeward (NMT)	EE 565: Position, Navigation,	and Timing	March 19, 2018	35 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,128,[],4096,Fs,'onesided');

- Length of data sequence must be increased.
- Still can't resolve the two frequencies as the window size is too small.

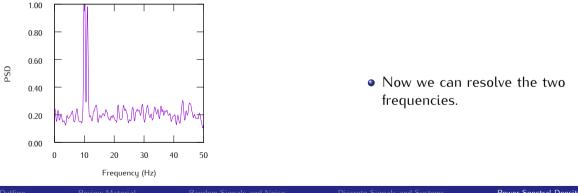
		Random Signals and Noise	Discrete Signa	ls and Systems	Power Spectral	Density
Aly El-Osery, H	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	id Timing		March 19, 2018	35 / 37



Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');

Outline	Review Material 00000	Random Signals and Noise	Discrete Signals and Systems	Power Spectral	Density
Aly El-Os	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigatio	on, and Timing	March 19, 2018	36 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');



Frequency (Hz)

				Power Spectral	Density
Aly El-Osery, H	Kevin Wedeward (NMT)	EE 565: Position, Navigation, an	d Timing	March 19, 2018	36 / 37

Fs = 100; t = 0:1/Fs:50; x = cos(2*pi*10*t)+cos(2*pi*11*t)+... sqrt(0.1*Fs)*randn(1,length(t)); [Pxx,f] = pwelch(x,256,[],4096,Fs,'onesided');

				Power Spectral	Density
Aly El-O	sery, Kevin Wedeward (NMT)	EE 565: Position, Navigation, and	l Timing	March 19, 2018	36 / 37

- The length of the data sequence determines the maximum resolution that can be observed.
- Increasing the window length of each segment in the data increases the resolution.
- Decreasing the window length of each segment in the data decreases the variance of the estimate.
- nFFT only affects the amount of details shown and not the resolution.

Outline	Review Material 00000	Random Signals and Noise	Discrete Signal	ls and Systems	Power Spectral	Density
Aly El-(Osery, Kevin Wedeward (NMT)	EE 565: Position, Navigation	on, and Timing		March 19, 2018	37 / 37