EE 231 - Homework 5
 Due September 30, 2009

1. For the circuit shown in Fig. 4.25 (page 153 of the text),
(a) Write the Boolean function for the output in terms of the input variables.
(b) If the circuit is listed in a truth table, how many rows and columns would there be in the table?
(c) Write a Verilog dataflow model for the circuit.
2. A minority circuit is a circuit with an odd number of inputs whose output is a 1 if and only if a minority of its inputs are 1.
(a) Find the truth table for a three-input minority circuit.
(b) From the truth table, find the Boolean equation for the circuit.
(c) Write a Verilog dataflow model of the circuit.
3. Problem 4.10. Treat this as a 4-input, 4-output combinational circuit, find the truth table, and use Karnaugh maps to simplify.
4. (a) Design a full subtractor circuit with three inputs $x, y, B_{\text {in }}$, and two outputs D and $B_{\text {out }}$. The circuit subtracts $x-y-B_{i n}$. $B_{\text {out }}$ is 0 if no borroow is needed to complete the subtraction, and 1 if a borrow is needed.
(b) Draw a block diagram showing how four full subtractors can be used to implement a 4-bit subtraction.
(c) Write a Verilog dataflow model to implement the circuit of Part (b).
5. (a) The adder-subtractor circuit of Fig. 4.13 has the following values for mode input M and data inputs A and B:

	M	A	B
(a)	0	0110	0101
(b)	0	1100	1101
(c)	1	0110	0011
(d)	1	0000	0001

In each case determine the values of the four SUM outputs, the carry C, and overflow V.
(b) Using the conditional operator (?:), write a Verilog dataflow description of the four-bit adder-subtractor of Fig. 4.13.
6. For the circuit shown in Fig. 4.13 of the text, verify that the V output bit is correct for the addition operation. That is, show that (a) V will be 1 when you add two positive numbers together ($B_{3}=0$ and $A_{3}=0$) and get a negative number ($S_{3}=1$), (b) V will be 1 when you add two negative numbers together ($B_{3}=1$ and $A_{3}=1$) and you get a positive number ($S_{3}=0$), and (c) the V output will be 0 in all other circumstances (adding two positives and getting a positive, adding two negatives and getting a negative, or adding a positive and a negative number).
7. Assume that the exclusive-OR gate has a propagation delay of 15 ns and that the AND and OR gates have a propagation delay to 10 ns . What is the total propagation delay of the four-bit adder of Fig. 4.12?

