EE 231L Lab 2

Pre-Lab 1

Consider the following two-input, four-output circuit: the inputs are S_{0} and S_{1}, and the outputs are D_{0}, D_{1}, D_{2} and D_{3}. Only one of the four outputs is high - the output which corresponds to the binary number $S_{1} S_{0}$. For example, if $S_{1} S_{0}=10$, then D_{2} is high, and the three other outputs are low. This type of circuit is called a decoder.

Design a circuit to implement the two-input, four-output decoder. To implement your design, you may use only $74 \mathrm{HC} 00,74 \mathrm{HC} 02,74 \mathrm{HC} 04,74 \mathrm{HC} 08,74 \mathrm{HC} 32$ and 74 HC 86 chips. Determine the functions of these chips from their data sheets. You can download the data sheets by clicking on the hyperlinks in the PDF file, or you can download them from a manufacturer's web site (such as http://www.ti.com or www.national.com).

74HC00 \qquad
74 HC 02 \qquad
$74 \mathrm{HC0} 4$ \qquad
74HC08 \qquad
74 HC 32 \qquad
74HC86 \qquad

Draw three representations for this design:

1. A two-input, four-output Truth table.
2. An input and output waveform sketch.
3. A schematic using gate symbols (see example schematic on next page). Be sure the schematic is complete - include pin numbers. (Use the DIP package from the data sheets for pin numbers.)
