
EE 308     New Mexico Tech Spring 2012 
 
 

Page 1 
 

 
Lab 1 

MC9S12 Assembler and Monitor 
 

 
Introduction and Objectives 
 
The purpose of this lab is to help you become familiar with your Dragon12-Plus 
Evaluation Board (EVB), and some of the software tools which you will use to write 
programs for this course. This laboratory introduces you to the following MC9S12 
assembly language programming tools: 
 

• Freescale CodeWarrior. 
 
• The D-Bug12 monitor that runs on the MC9S12. 

 
An assembler takes assembly language code in a form that a human can reasonably read 
and write (with a little practice), translates it to machine code which a microprocessor can 
understand, and stores the machine code in a file which can be uploaded to the 
microprocessor (Motorola uses a format called “S19” for its machine code files).  In this 
lab we will use the Freescale CodeWarrior, which is on the PCs in the 
Digital/Microcontrollers lab. The assembler of the CodeWarrior produces an output file 
with an .s19 extension which can be loaded into and run on the MC9S12. The D-Bug12 
monitor, running from MC9S12 Flash memory, loads S19 records into the MC9S12 and 
provides some tools for debugging loaded programs. 
 

1.  Prelab 
 
You should read this entire lab and answer all of the questions in the pre-lab section 
before coming to lab. 
 
The D-Bug12 monitor allows you to interact with the MC9S12 microcontroller. You can 
use it to load programs, to find out what is in the MC9S12s registers and memory, to 
change the contents of the registers and memory, and many other things. The D-Bug12 
commands of interest for this lab are: 
 
ASM, BF, BR, NOBR, G, HELP, LOAD, MD, MDW, MM, MMW,  RM, RD, and T. 
 
Read the descriptions of these commands in Chapter 5 of the D-Bug12 Reference Guide, 
or in Sections 3.5 and 3.6 of Huang. 



EE 308     New Mexico Tech Spring 2012 
 
 

Page 2 
 

 

1.1   Questions to Answer Before Lab 
 
1. What is the difference between the LOAD and UPLOAD commands? 
 
2. How would you change fill every memory location in the address range from 
0x1000 to 0x10ff with 0x55?  
 
3. The Dragon12-Plus has a two-line LCD display, and there is a way for you to 
identify your board by putting your name (up to 16 characters) on the first line of the 
display. You can do this by converting your name into ASCII, and putting these 
ASCII data into a region of the EEPROM on your board.  (If your name has less than 
16 characters, pad you name – at the beginning and/or end – with spaces.) 
 
Convert you name to ASCII. For example, Jane Smith would become 0x4A 0x61 
0x6E 0x65 0x20 0x53 0x6D 0x69 0x74 0x68 0x20 0x20 0x20 0x20 0x20 0x20. You 
will enter these ASCII characters into you board in lab in Step 7 of Section 2.1. 
 
4. What will be the contents of the A register after each instruction of the program 
shown in Program 1 executes? 
 

 
 
Program 1 An assembly language program used to get started with HyberTerminal and 
D-Bug12. 
 
; MC9S12 demo program 
; EE 308 
 
; This is a program to add four numbers in memory from $1000 through $1003, 
; divide the sum by four, and store the result in address $1004 
prog: equ  $2000   ; Starting address from program 
data:  equ $1000  ; Starting address for data 

org  prog   ; Set initial program counter value 
ldaa  input1   ; Load first number into ACCA 
adda input2  ; add second number 
adda input3   ; add third number 
adda input4  ; add fourth number 
asra   ; divide by 2 
asra    ; divide by 2 
staa  average  ; save result in memory 
swi 
 
org  data   ; Put data starting at this location 

input1: dc.b  $35  ; First number 
input2: dc.b  $42  ; Second number 



EE 308     New Mexico Tech Spring 2012 
 
 

Page 3 
 

input3: dc.b  $3f  ; Third number 
input4: dc.b  $2c   ; Fourth number 
average: ds.b  1  ; Reserve one byte for results 
 
 
 

2.  The Lab 
 

We will use D-Bug12 to explore the memory of the MC9S12 on your evaluation board. 
The memory map for your MC9S12 is shown on page 24 of the MC9S12DP256B Device 
Users Guide (zip file). (Look for the figure labeled Normal Single Chip.) Some of the 
memory is used by the D-Bug12 monitor. For this class you can use RAM from 0x1000 
to 0x3BFF, and EEPROM from 0x0400 to 0x0EFF. Normally, you should use the 
RAM from 0x2000 through 0x3BFF for programs, and from 0x1000 through 0x1FFF for 
data. In later labs, you will load programs into the EEPROM so the programs will remain 
on you board after cycling the power. Do not use RAM from 0x3C00 through 0x3FFF or 
EEPROM from 0x0F00 through 0x0FFF. 
 
On your account on the EE network, create a directory for this course (say, U:\EE308). 
Create a project using the following steps: 
 
1. Start CodeWarrior. 
 
2. Start a new project. 
 
3. Under Device and Connection: 
 

• Select the appropriate device which is HCS12D Family:MC9S12DP256B. 
 
• Under connections select Full Chip Simulation. 

 
4. Under Project Parameters: 
 

• Choose an appropriate name for the project and place it in U:\EE308\LAB01). 
 
• unselect C and select Absolute assembly. 

 
5. Click Finish. 
 
6. Under Edit/Standard Settings/Target/Assembler for HC12: Click on options and select 
Generate a listing file. 
 
7. In the left-hand panel will be a tree of the project, with a file called main.asm.  Double-
click on main.asm, and edit the file to match Program 1.  (You can edit the file at home, 
and replace the main.asm file in the Sources subdirectory with that file.) 
 



EE 308     New Mexico Tech Spring 2012 
 
 

Page 4 
 

8. Save and assemble the file. (To assemble the file, click on the Project drop-down 
menu, and select Make.)  This will generate a Project.abs.s19 file that you can download 
onto your Dragon12 board and a Project.abs.lst which is a listing of your program after 
making the project.  The two files are in the bin subdirectory. 
 
9. Edit the Project.abs.s19 file,  remove the first line then save it. 
 
 
 
 

2.1  Answer the Following During Lab 
 

Here are some questions on the output of the assembler. Be sure to answer these 
questions in you lab book. 
 
1. Look at the lab01.lst file. Where in memory will the machine code for the instruction 
adda input2 be stored? 
 
2. What machine code is generated for the adda input2 mnemonic? Is this what you 
expected? (Look up the ADDA instruction in MC9S12 CPU12 Core Users Guide, to 
determine what code this instruction should generate.) 
 
3. At what address will the variable average be located in the MC9S12 memory? 
 
Connect your Dragon12-Plus board to your computer using the included USB cable. 
Make sure HyperTerminal is running with the following setting and then power up the 
Dragon12-Plus board.  (Note:  In the Digital Lab, the built-in USB-to-Serial adapter on 
the Dragon12-Plus board will appear as com4.  If you connect the adapter to your 
personal computer, it may appear with a different number – on my laptop it appears as 
com28.  If you do not have HyperTerminal on your personal computer, you can use a 
different terminal program, such AsmIDE and MiniIDE as discussed in the text.) 
 

• serial port – com4 
 
• 9600 Baud 
 
• N81 (no-parity - 8bits data - 1 stop bit). 
 
• Xon/Xoff flow control 

 
4. Use the MM  command to put 0x55 into memory location 0x2000 and 0xAA into 
memory location 0x2001. 
Use the MD command to verify that this was done. 
 



EE 308     New Mexico Tech Spring 2012 
 
 

Page 5 
 

5. Use the MMW  command to put 0x55 into memory location 0x2100 and 0xAA into 
memory location 0x2101. Use the MD  command to verify that this was done. 
 
6. Use the BF command to load 0x55 into memory locations 0x2800 to 0x2FFF. Use the 
MD  command to verify that it worked. 
 
7. Use the MM  command to put the ASCII value of W into address 0xFDE and the 
ASCII value of C into address 0xFDF. Then put the ASCII representation for your name 
into addresses 0xFE0 through 0xFEF. 
Use the MD  command to verify these addresses hold the correct values. Push the Reset 
button. Your name should now be in the first line of the LCD display. 
 
8. Use the ASM 2000 command to enter the following simple program at address 
0x2000. (What does this program do?) 
 

ldaa  #$1C 
adda  #$A5 
clrb 
decb 
staa  $1000 
stab  $1001 
swi 

 
9. You can trace (execute your program one step at a time) through your program by 
setting the PC (Program Counter) to the address of the first instruction of your program, 
and then use the T (Trace) command. Use the RM  command to change the value of the 
Program Counter to 0x2000, the address of the first instruction of the simple program. 
Trace through your program and observe what is happening to the registers and memory. 
(Use the MD  command to display memory.) Verify that the values in A and B are what 
you expect after each instruction. 
 
10. Use the G 2000 command to run your entire program. 
 
11. Load your program lab01.s19 into the EVB. To do this, type LOAD  into the terminal 
window, then use the Transfer:Send Text File. . .menu option to send the program to the 
EVB. 
 
12. In the Terminal window type ASM 2000 followed by the ENTER key. You should 
see the first instruction of your program, along with its address and machine code. Each 
time you hit ENTER you should see the next instruction in the program. To exit this 
mode, type a period before hitting ENTER. 
 
13. Trace through your program. How do the contents of the A register compare to what 
you predicted in the Pre-lab after the execution of each instruction? 
 



EE 308     New Mexico Tech Spring 2012 
 
 

Page 6 
 

14. When you are done tracing through your program, reload it and run the entire 
program by giving the command: G 2000. Verify that the program worked correctly. 
 
15. When debugging a long program, it is impractical to step through the entire program 
to get to the section of code which is giving problems. A breakpoint is a way to run a 
program up to the point in the code you want to debug, and stop there. After stopping at 
the breakpoint, you can then trace through your code to try to resolve the problem. You 
can set a breakpoint with the BR command.  The format is BR xxxx, where xxxx is the 
address you want to break at. Find the address of the first asra instruction, and set a 
breakpoint there. Give the command G 2000, and your program should run until it is 
ready to execute the first asra instruction. You can trace through your program after that 
to see what the instructions do. Do this. When done, use the NOBR command to remove 
the breakpoint. 
 
16. Change the two asra instructions to lsra instructions. Rerun your program. Does it 
give a different result? Why? 


